	$A\hat{C}D = D\hat{C}E$, shared angle $A\hat{D}C = D\hat{E}C = 90$, [given] $D\hat{A}C = E\hat{D}C$ [third] angles in a triang Three angles equal, therefore the triangare similar				B2 for two correct pairs of angles with correct reasons or B1 for one correct pair of angles with correct reason or two correct pairs of angles with incorrect/no reasons
2	$AC=BD$ equal diameters AB is common $\angle ABC = \angle BAD = 90^{\circ}$ angle in semic Congruent RHS	circle		3	B1 for correct pair of angles and one correct pair of sides or for two correct pairs of sides B1 for correct reasons for two pairs of sides/angles
3	OA = OC radii $\angle APO = \angle CQO$ perpendicular to chord $AP = CQ$ midpoints [of equal chords] RHS OR $OA = OC$ radii $OP = OQ$ equal chords [equidistant from centre] $AP = CQ$ midpoints [of equal chords] SSS OR $OP = OQ$ equal chords [equidistant from centre] $\angle APO = \angle CQO$ perpendicular to chord $AP = CQ$ midpoints [of equal chords] SAS	3	B1	pair o	ne correct pair of angles and one correct of sides or for two correct pairs of sides orrect reason for two pairs of sides/angles
4	$\angle BAX = \angle OCX$, alternate [angles] $\angle ABX = \angle COX$, alternate [angles] $\angle AXB = \angle CXO$, [vertically] opposite	1			two correct pairs of angles correct reason for one pair of angles
5	$\angle POA = \angle QOB$ vertically opposite $AO = OB$ equal radii $\angle PAO = \angle QBO = 90^{\circ}$ tangent perpendicular to radius			3*	B1 for two pairs of equal angles: $\angle POA = \angle QOB$ and $\angle PAO = \angle QBO$ or for one pair of angles and pair of sides: $\angle POA = \angle QOB$ or $\angle PAO = \angle QBO$ and $AO = OB$ AND B1 for a correct reason linked with a

						T	
6		x = 45			1		
		y = 20			1		
		z = 115			1		
7		p = 3.8	2		B1 for	one correct	
		<i>q</i> = 77°					
8 (a)	1	40	1				
(b)) 1	.2	2			for $3 \times \left(\frac{7}{5} - 1\right)$; or	
						$\left(\frac{their(a)}{100} - 1\right)$; oe a complete algebraic method.	
9 (a)) 1	:2 oe	1			. (2)	
(b)) 1	: 8 oe, or ft their(a) cubed	1√				
10 (a)	10 (a) (i) $EC = BE$ or $AC = FE$ and $\angle AEC = \angle FBE$ or $\angle ECA = \angle BEF$ Two correct reasons for their choices B1 Statements and reasons: $EC = BE$; radii $AC = FE$; diameters $\angle AEC = \angle FBE = 90^{\circ}$; angle in semicircle $\angle ECA = \angle BEF = 60^{\circ}$; equilateral triangle Third statement, leading to correct congruence condition i.e. RHS, SAS, SSA (ii) BFD						
11 (a)	Establishing, with reasons, that two pairs of angles are equal; and a conclusion (or an introductory statement), that the triangles are similar. e.g. $A\hat{B}D = B\hat{D}C$ (alternate angles) $A\hat{D}B = B\hat{C}D$ (given) Since two angles are equal, triangles ABD and BDC are similar.		re	2		1 for $A\hat{B}D = B\hat{D}C$, with mention of ternate angles	
(b)) (i)	6.3		2	2 B	1 for $\frac{BC}{4.2} = \frac{6}{4}$ oe	
	(ii)	$\frac{4}{9}$		1			
12	(i)	Similar triangles established www	2		B1 for a	a correct pair of equal angles	
		(ii) 7.2	2		B1 for 6 5 : 2 so	corresponding sides in the ratio	

13	(a) 3		1	
	(b) $13\frac{1}{2}$ oe		1	
	(c) $4\frac{1}{2}$ oe		1	
14	(a) $180 - x - y$ or $180 - (x + y)$ only		1	
	(b) $3\frac{3}{4}$ or any equiv.		1	
	(c) $\frac{9}{16}$		1	
15	18	2	B1 for M1 fo	r attempt at $\sqrt[3]{8}$: $\sqrt[3]{27}$ or or 12^3 : $x^3 = 8$: 27 oe