Arc length \& Area of Sector worksheet

1

NOT TO
SCALE
E, F, G and H are points on a circle with centre O and radius 6 cm .
$E \hat{H} O=30^{\circ}$ and $E \hat{F} G=116^{\circ}$.
Calculate the shaded area.
cm^{2}

NOT TO
SCALE

The diagram shows the major sector of a circle with centre O and radius 3 cm .
Calculate the area of this sector.
Give your answer in the form $k \pi$, where k is an integer.

3

NOT TO
SCALE
P and Q are points on the circumference of a different circle, centre O.
$P R$ and $Q R$ are tangents to the circle at P and Q respectively.
$O P=8 \mathrm{~cm}$ and $P \hat{O} Q=130^{\circ}$.
(i) Find $P R$.
(ii) Calculate the percentage of quadrilateral $O P R Q$ that is shaded.

The diagram shows two circles, both with centre O.
The radius of the small circle is 3 cm and the radius of the large circle is 6 cm .
The minor sector $A O B$ has an angle of 60°.
The total area of the shaded regions is $k \pi \mathrm{~cm}^{2}$.
Find the value of k.

$$
\begin{equation*}
k= \tag{4}
\end{equation*}
$$

$A C$ and $B D$ are diameters of the circle, centre O.
$A C=12 \mathrm{~cm}$ and $A \hat{O} B=130^{\circ}$.
(a) Calculate the area of triangle $A O B$.
\qquad
(b) Calculate the area of the sector $A O D$.

6 (a)

$O A B$ is a sector of a circle, centre O, radius 11 cm .
$A \hat{O} B=134^{\circ}$.
(i) Calculate the length of the arc $A B$.

Answer \qquad cm [2]
(ii) Calculate the shortest distance from O to the line $A B$.

7 (a) The ventilation shaft for a tunnel is in the shape of a cylinder.
The cylinder has radius 0.4 m and length 15 m .
Calculate the volume of the cylinder.
\qquad $m^{3}[2]$
(b) The diagram shows the cross-section of the tunnel.

The cross-section of the tunnel is a major segment of a circle, centre O.
The radius of the circle is 4.5 m and $A O B=110^{\circ}$
Calculate the area of the cross-section of the tunnel.

$O A B$ is a sector of a circle, centre O, and radius 10 cm .
$A \hat{O} B=72^{\circ}$ and C is the point on the arc $A B$ such that $O C$ bisects $A \hat{O} B$.
(a) Calculate the perimeter of sector $O A B$.
\qquad cm [3]
(b) (i) Calculate the area of sector $O A B$.
cm^{2} [2]
(ii) Calculate the total shaded area.
cm^{2} [3]

9 (a) P and Q are points on the circumference of a circle, centre O, radius $R \mathrm{~cm}$. The minor arc $P Q=20 \mathrm{~cm}$ and $P \hat{O} Q=48^{\circ}$.
(i) Show that $R=23.9$, correct to one decimal place.

(ii) Calculate the area of the minor sector $P O Q$.
(iii) The minor sector $P O Q$ is removed from the circle and the remaining major sector is shaped to form an open cone of radius $r \mathrm{~cm}$.

Calculate r.

The diagram shows a sector of a circle with radius $3 r \mathrm{~cm}$ and angle a° and a circle with radius $r \mathrm{~cm}$.
The ratio of the area of the sector to the area of the circle with radius $r \mathrm{~cm}$ is $8: 1$.
(a) Find the value of a.

$$
\begin{equation*}
\text { Answer } a= \tag{3}
\end{equation*}
$$

(b) Find an expression, in terms of π and r, for the perimeter of the sector.
\qquad

11 (a) $O A B$ is a sector of a circle, centre O, radius 6 cm .
$A \hat{O} B=25^{\circ}$.
(i) Calculate the length of the arc $A B$.

(ii) Calculate the area of the sector $O A B$.

Answer

\qquad cm^{2} [2]
(b) The sector $O A B$ from part (a) is the cross-section of a slice of cheese.

The slice has a height of 5 cm .
(i) Calculate the volume of this slice of cheese.

Answer \qquad cm^{3} [1]
(ii) Calculate the total surface area of this slice of cheese.
\qquad

The angle of a sector of a circle, radius 6 cm , is 40°.
(i) The area of the sector is $k \pi \mathrm{~cm}^{2}$.

Find the value of k.
(ii) Find an expression, in terms of π, for the perimeter of the sector. Give your answer in the form $(a+b \pi)$ centimetres.
(iii) A geometrically similar sector has perimeter $(72+n \pi)$ centimetres.

Find the value of n.

A hollow cone has a base radius 6 cm and slant height 10 cm .
The curved surface of the cone is cut, and opened out into the shape of a sector of a circle, with angle x° and radius $r \mathrm{~cm}$.
(a) Write down the value of r.

$$
\text { Answer } r=
$$

(b) Calculate x.

$$
\text { Answer } x=
$$

$14 \quad P$ and Q are points on the circle centre O with radius 4 cm .
$P \hat{O} Q=130^{\circ}$.

(i) Calculate the area of triangle $P O Q$.
(ii) Calculate the area of the major segment, shown unshaded in the diagram.
\qquad cm^{2}
15

The diagram shows a sector $A O B$ of a circle with centre O and radius 6 cm . The angle of the sector is 310°.
(a) Calculate the total perimeter of the sector.
cm [3]
(b) Calculate the area of the sector.

$A D$ and $B C$ are arcs of circles with centre O.
A is a point on $O B$, and D is a point on $O C$.
$O A=20 \mathrm{~cm}$ and $A B=25 \mathrm{~cm}$.
$A \hat{O} D=150^{\circ}$.
(a) Calculate the perimeter of the shaded shape $A B C D$.
cm [3]
(b) Calculate the area of the shaded shape $A B C D$.
cm^{2} [3]
(c) The shape $A B C D$ is used to make a lampshade by joining $A B$ and $D C$.

Calculate the radius, $r \mathrm{~cm}$, of the circular top of the lampshade.

