

or
$$\pi \times 6^2 - \pi \times 3^2 - \frac{60}{360} \times \pi \times (6^2 - 3^2)$$
 oe

or M1 for
$$\frac{300}{360} \times \pi \times 6^2$$
 oe or $\frac{300}{360} \times \pi \times 3^2$ oe
or $\pi \times 6^2$ oe or $\pi \times 3^2$ oe

5(a)	13.8 or 13.78 to 13.79		2	M1 for $\frac{1}{2} \times 6 \times 6 \times \sin 130$ oe
				After 0, SC1 for answer 55.2 or 55.15 to 55.16
5(b)	15.7 or 15.70 to 15.71		2	M1 for $\frac{180-130}{360} \times \pi \times 6^2$ oe
				After 0, SC1 for answer 62.8 or 62.83 to 62.84
6(a)(i)	25.7 or 25.72 to 25.73	2	M1 for	$\frac{134}{360} \times 2 \times \pi \times 11 \text{ oe}$
6(a)(ii)	4.3[0] or 4.298	2	M1 for	$\cos\left(\frac{134}{2}\right) = \frac{d}{11} \text{ or } \sin\left(\frac{180 - 134}{2}\right) = \frac{d}{11} \text{ oe}$
7(a)	7.54		2	M1 for $\pi \times 0.4^2 \times 15$
7(b)	53.7		4	M1 for $\frac{1}{2} \times 4.5^2 \times \sin 110$ oe
	Ċ	S		M1 for $\frac{250}{360} \times \pi \times 4.5^2$ or $\frac{110}{360} \times \pi \times 4.5^2$ M1 for <i>their</i> 9.514 + <i>their</i> 44.18 oe
8(a)	32.56 to 32.58 or 32.6		3 M2 for	$=\frac{72}{360}\times\pi\times20+20\mathrm{oe}$
			or M1 A1 for	for $\frac{72}{360} \times \pi \times 20$ 12.56 to 12.58 or 12.6
			After 0 SC1 fo) or 1, or <i>their</i> 'arc length' + $10 + 10$ soi
8(b)(i)	62.83 to 62.84 or 62.8		2 M1 for	$=\frac{72}{360}\times\pi\times10^2$
8(b)(ii)	4(.00) to 4.08 nfww	·	3 FT from negative M2 for	m <i>their</i> (b)(i) – (58.76 to 58.8) provided answer not re <i>their</i> (b)(i) – $2 \times \frac{1}{2} \times 10 \times 10 \times \sin\left(\frac{72}{2}\right)$ oe
			or M1	for $[2\times] \frac{1}{2} \times 10 \times \sin\left(\frac{72}{2}\right)$ oe soi

9 (a) (i)		Dependent on 4 fig. term calculated using any version of π .	3	М	1 for arc length $\frac{48}{360} \times 2\pi R$ soi and	
				М	1 for $R = 20 \times \frac{360}{48} \times \frac{1}{2\pi}$ oe	
(ii)		239	2	М	M1 for $\frac{48}{360} \times \pi R^2$	
(iii)		20.7	2	М	A1 for $2\pi r = \frac{312}{360} \times 2\pi R$ oe	
10 a) (b)	320 6 <i>r</i> +	$\frac{16\pi r}{3}$ final answer	3	*	M2 for $\frac{a}{360} \times \pi \times (3r)^2 = 8\pi r^2$ oe OR M1 for $\frac{a}{360} \times \pi \times (3r)^2$ oe seen or for $8\pi r^2$ seen C1 for $kr + \frac{16\pi r}{3}$, where $k \ge 0$ OR M1 FT for $\frac{their 320}{360} \times 2\pi \times 3r$ oe or for $6r + \frac{their 320}{360} \times n\pi r$ oe where <i>n</i> is a positive integer	
11a) (i)		2.62		2	M1 for $\frac{25}{360} \times 2\pi \times 6$	
(ii)		7.85		2	M1 for $\frac{25}{360} \times \pi \times 6^2$	
(b) (i)		39.3		1ft		
(ii)		88.8		3ft	B1 for 30 or 60 or M1 for 5× (a)(i) and indep M1 for 2×(a)(ii)	
12i)	4	(π) cao	2	B	1 for $\pi \times 6^2$ or for $\frac{40}{360}$	
(ii)	12	$2 + \frac{4}{3}\pi$ final answer	2	B	1 for $(a =)$ 12, or for $(b =) \frac{4}{3}$	
(iii)	8		1ft			

13(a)	10	1	
(b)	216	2	M1 for $\pi \times 6 \times 10 = \frac{x}{360} \times \pi r^2$ or $2 \times \pi \times 6 = \frac{x}{360} \times 2\pi r$ where $r = 10$ or <i>their</i> (a). Where radians are used, method must include multiplication by $\frac{180}{\pi}$.
14i)	6.126 to 6.13	2	M1 for $\frac{1}{2} \times 4 \times 4 \times \sin 130$ Or $\frac{1}{2}PQ \times$ perpendicular height (numerical)
(1	ii) 38.2 to 38.3	3	M1 for $\frac{(360-130)}{360} \times \pi \times 4^2$ soi by 32.11 or $\frac{130}{360} \times \pi \times 4^2$ soi by 18.15 And M1 for ' <i>their</i> major sector area' + ' <i>their</i> triangle area' Or for ' <i>their</i> circle area' - ' <i>their</i> minor sector area' + ' <i>their</i> triangle area'
15 (a) 44.5	3	M1 for numerical $\frac{\theta}{360} \times 2\pi \times 6$ oe and M1 for <i>their</i> arc + 12 If second M not scored, A1 for 32.46 or 5.24 soi. SC1 after 0 for $2\pi 6$ seen (= 37.7)
(b) 97.4	2	M1 for numerical $\frac{\theta}{360} \times \pi \times 6^2$ SC1 after 0 for $\pi 6^2$ (= 113) seen
16 (a)	220	3	M1 for $\frac{150}{360} \times 2 \pi r$ and B1 for their arc AD + their arc BC + 50
(b)	2130	3	M2 for $\frac{150}{360} \pi (45^2 - 20^2)$ or M1 for $\frac{150}{360} \pi r^2$
(c)	8.33	2	M1 for $2\pi r = their$ arc <i>AD</i> from (a) soi

Neda

Neda