

9 (a) (i) (ii) (iii)	Dependent on 4 fig. term calculated using any version of π. 239 20.7	3 2 2	M1 for arc length $\frac{48}{360} \times 2 \pi R$ soi and M1 for $R=20 \times \frac{360}{48} \times \frac{1}{2 \pi}$ oe M1 for $\frac{48}{360} \times \pi R^{2}$ M1 for $2 \pi r=\frac{312}{360} \times 2 \pi R$ oe
$10 \quad$ a) (b)	320 $6 r+\frac{16 \pi r}{3}$ final answer		M2 for $\frac{a}{360} \times \pi \times(3 r)^{2}=8 \pi r^{2}$ oe OR M1 for $\frac{a}{360} \times \pi \times(3 r)^{2}$ oe seen or for $8 \pi r^{2}$ seen C1 for $k r+\frac{16 \pi r}{3}$, where $k \geqslant 0$ OR M1 FT for $\frac{\text { their } 320}{360} \times 2 \pi \times 3 r$ oe or for $6 r+\frac{\text { their } 320}{360} \times n \pi r$ oe where n is a positive integer
11a) (i)	2.62		$\mathbf{2} \quad \mathbf{M 1} \text { for } \frac{25}{360} \times 2 \pi \times 6$
(ii)	7.85		$\mathbf{2} \quad \text { M1 for } \frac{25}{360} \times \pi \times 6^{2}$
(b) (i)	39.3		1ft
(ii)	88.8		$\begin{aligned} & \text { B1 for } 30 \text { or } 60 \text { or } \\ & \text { M1 for } 5 \times(\text { a)(i) } \\ & \text { and } \\ & \text { indep M1 for } 2 \times(\mathrm{a})(\mathrm{ii}) \end{aligned}$
12i)	$4(\pi)$ cao	2	B1 for $\pi \times 6^{2}$ or for $\frac{40}{360}$
(ii)	$12+\frac{4}{3} \pi$ final answer	2	B1 for $(a=)$ 12, or for $(b=) \frac{4}{3}$
(iii)	8	1 ft	

13(a) (b)	$\begin{aligned} & 10 \\ & 216 \end{aligned}$	1 2	M1 for $\pi \times 6 \times 10=\frac{x}{360} \times \pi r^{2}$ or $2 \times \pi \times 6=\frac{x}{360} \times 2 \pi r$ where $r=10$ or their (a). Where radians are used, method must include multiplication by $\frac{180}{\pi}$.
14i)	6.126 to 6.13		M1 for $\frac{1}{2} \times 4 \times 4 \times \sin 130$ Or $\frac{1}{2} P Q \times$ perpendicular height (numerical)
(ii)	38.2 to 38.3	3	M1 for $\frac{(360-130)}{360} \times \pi \times 4^{2}$ soi by 32.11 or $\frac{130}{360} \times \pi \times 4^{2}$ soi by 18.15 And M1 for 'their major sector area' + 'their triangle area' Or for 'their circle area' - 'their minor sector area' + 'their triangle area'

15
(a) 44.5
(b) 97.4

3 M1 for numerical $\frac{\theta}{360} \times 2 \pi \times 6$ oe and
M1 for their arc + 12
If second \mathbf{M} not scored, $\mathbf{A 1}$ for 32.46 or 5.24 soi.

SC1 after 0 for $2 \pi 6$ seen ($=37.7$)
2 M1 for numerical $\frac{\theta}{360} \times \pi \times 6^{2}$
SC1 after 0 for $\pi 6^{2}(=113)$ seen

16	(a) 220	3	M1 for $\frac{150}{360} \times 2 \pi r$ and B1 for their arc $A D+$ their $\operatorname{arc} B C+50$
	(b) 2130	3	M2 for $\frac{150}{360} \pi\left(45^{2}-20^{2}\right)$ or M1 for $\frac{150}{360} \pi r^{2}$
	(c) 8.33	2	M1 for $2 \pi r=$ their $\operatorname{arc} A D$ from (a) soi

