1 (a)	$\frac{5}{3}\mathbf{b} - \frac{2}{3}\mathbf{a}$ final answer			3	B2 for $\left[\overrightarrow{AC} = \right] \frac{5}{3}(\mathbf{b} - \mathbf{a})$ or
					$\frac{5}{3}\mathbf{b} - \frac{5}{3}\mathbf{a}$
					or $\left[\overrightarrow{BC}=\right]\frac{2}{3}(\mathbf{b}-\mathbf{a})$ or
					$\frac{2}{3}\mathbf{b} - \frac{2}{3}\mathbf{a}$
					or M1 for a correct vector route for \overrightarrow{OC} or $\left[\overrightarrow{AB}=\right]\mathbf{b}-\mathbf{a}$
					If 0 scored, SC1 for answer $5 - 2$
					$-\frac{5}{3}\mathbf{b}+\frac{2}{3}\mathbf{a}$ oe
1(b)	$\overrightarrow{DB} = \frac{2}{5}\mathbf{a} \text{ or } \overrightarrow{BD} = -\frac{2}{5}\mathbf{a}$			M1	
	\overrightarrow{DB} is a multiple of \overrightarrow{OA} , hence parallel oe			A1	Or $BD = \frac{2}{5}AO$, hence parallel
2(a)	$\frac{5}{2}$ c of final answer		1		
2(b)	$4\mathbf{a} + \frac{3}{2}\mathbf{c}$ or $\frac{8\mathbf{a} + 3\mathbf{c}}{2}$ final answer		2		r final answer $4\mathbf{a} + k\mathbf{c}$ oe or $.5\mathbf{c}$ oe,
				$k \neq 0$	$\dot{b} = 3\mathbf{a}$ soi
				or M1	for a correct route along the lines of agram using the given vertex letters
2(c)	1:10 oe		1		
3(a)(i)	(-1, 4.5)	1			
3(a)(ii)	(-1, 13)	1			
3(a)(iii)	7.21[1]	2	Ι	M1 for ($(-4)^2 + 6^2$ oe
3(b)(i)	b – a	1			

3(b)(ii)	$\frac{1}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$ or $\frac{1}{4}(\mathbf{a} + \mathbf{b})$		the	for correct vector route along the lines of diagram for $\overrightarrow{BC} = \frac{\mathbf{a}}{2}$ soi
				for $\overrightarrow{NB} = \frac{1}{4} their(\mathbf{b} - \mathbf{a})$ soi $\overrightarrow{NA} = \frac{3}{4} their(\mathbf{a} - \mathbf{b})$ soi
4(a)(i)	$\begin{pmatrix} 1 \\ -8 \end{pmatrix}$	2	B1 for ar	iswer $\begin{pmatrix} 1 \\ p \end{pmatrix}$ or $\begin{pmatrix} p \\ -8 \end{pmatrix}$
			After 0 s	cored, SC1 for answer $\begin{pmatrix} -1\\ 8 \end{pmatrix}$
4(a)(ii)	(-1, -2)	1		
4(a)(iii)	10 and –4	3	$n^2 - 6n - 6n$	nswer 10 or -4 nfww or $n-3 = \pm 7$ oe or 40 [=0] r $\sqrt{74} = \sqrt{(-3-2)^2 + (n-3)^2}$ oe
4(b)	2 : 3 nfww	3	or M1 fo the diagr	$\vec{L} = \frac{2}{5} \mathbf{q} \text{ oe or } \vec{RL} = -\frac{3}{5} \mathbf{q} \text{ oe}$ r correct vector route for \vec{KL} along the lines of am or $\vec{PL} = \frac{1}{2}\mathbf{q} - \frac{1}{10}\mathbf{q}$ oe or $\mathbf{q} - \frac{1}{10}\mathbf{q}$ oe
5(a)(i)	11.7 or 11.66	9	2	M1 for $10^2 + (-6)^2$ oe
5(a)(ii)	(23, -14)		2	B1 for one coordinate correct or for $\begin{pmatrix} 30 \\ -18 \end{pmatrix}$ seen After 0 scored, SC1 for (-14, 23)
5(b)(i)	$4\mathbf{p} + \mathbf{q}$		1	
5(b)(ii)	$3\mathbf{p} + \frac{3}{5}\mathbf{q}$ oe simplified vector final answer		2	B1 for $\overrightarrow{BX} = \frac{3}{5}\mathbf{q}$ or $\overrightarrow{XB} = -\frac{3}{5}\mathbf{q}$ or M1 for a correct route along the lines of the diagram
5(b)(iii)	$4\mathbf{p} - \frac{2}{5}\mathbf{q}$ oe simplified vector fin answer	al	2	B1 for $\overrightarrow{CX} = -\frac{2}{5}\mathbf{q}$ or $\overrightarrow{XC} = \frac{2}{5}\mathbf{q}$ or M1 for a correct route along the lines of the diagram

6(a)	Vector 3 p drawn		1	
6(b)	Vector $\mathbf{q} - \mathbf{p}$ drawn		1	If 0 scored in (a) and (b), award SC1 for two correct lines with no/incorrect arrows
7(a)	A positioned correctly	1	Ċ	
7(b)	<i>B</i> positioned correctly		5	
7(c)	$2 \mathbf{q} - \mathbf{p}$ oe	2		for $2\mathbf{q}$ oe or for $-\mathbf{p}$ oe scored, SC1 for answer $\mathbf{p} - 2\mathbf{q}$
8(a)(i)	$\begin{pmatrix} -7\\1 \end{pmatrix}$ final answer	1		
8(a)(ii)	$4^{2} + (\pm 3)^{2}$	M1		
	$1^2 + (\pm 5)^2$	M1		
	Correct concluding statement eg $\sqrt{25} < \sqrt{26}$ or 5 > 5.1[0] wrong or $ \mathbf{f} = 5 \mathbf{g} = 5.099$ so $ \mathbf{f} $ is not greater than $ \mathbf{g} $	A1		
e galecture.cor				http://youtube.com/MegaLecture

8(b)(i)	$-\frac{1}{3}a + b \text{ or } \frac{1}{3}(-a + 3b)$	1	
8(b)(ii)	$\frac{1}{6}\mathbf{a} + \frac{1}{2}\mathbf{b}$ or $\frac{1}{6}(\mathbf{a} + 3\mathbf{b})$	2	M1FT for a correct vector route for \overrightarrow{OQ}
8(b)(iii)	$\left[\overrightarrow{AR}=\right]-\frac{1}{2}\mathbf{a}+\frac{3}{2}\mathbf{b}$ or	B2	M1 for $-a + 3 \times their$ (b)(ii) or
	$\frac{1}{2}(-a+3b) \text{ or } -\frac{1}{2}(a-3b)$		$-\frac{2}{3}\mathbf{a}+\frac{1}{2}$ their(b)(i)+2×their (b)(ii)
	$OQ = \frac{1}{3}OR$, $OP = \frac{1}{3}OA$ and $P\hat{O}R = A\hat{O}R$		M1 for <u>two</u> of $OQ = \frac{1}{3}OR$, $OP = \frac{1}{3}OA$ or $P\hat{O}R = A\hat{O}R$
	$\overrightarrow{AR} = \frac{3}{2} \overrightarrow{PB}$ oe	B1	Dep on B2
	Similar triangles $\hat{OPQ} = \hat{OAR}$ or Similar triangles $\hat{OQP} = \hat{ORA}$		Dep on B2
9(a)	3 р	1	
9(b)	$\frac{1}{2}(3p+5q)$ oe	1	
9(c)	$\frac{1}{2}(3p+9q)$ oe	1	FT 2 q oe + <i>their</i> (b) isw
9(d)	1.5 oe	2	B1 for $[\overrightarrow{DE} =]\mathbf{p} + 3\mathbf{q}$; or for $k(\mathbf{p} + 3\mathbf{q})$
10(a)	$\angle BAX = \angle OCX$, alternate [angles] $\angle ABX = \angle COX$, alternate [angles] $\angle AXB = \angle CXO$, [vertically] opposite		B1 for two correct pairs of angles B1 for correct reason for one pair of angles
10(b)(i)	4	1	
10(b)(ii)	a - 6c or 3(3a - 2c)	2	B1 for answer $9\mathbf{a} + k\mathbf{c}$ or $k\mathbf{a} - 6\mathbf{c}$ ($k \neq 0$)
10(c)(i)	3:2	2	B1 for $3k : 2k$, where k is an integer
10(c)(ii)	9:4	1	FT their 3^2 : their 2^2
10(c)(iii)	4:5	1	
11(a)	7	3	M1 for $ \vec{OP} = \sqrt{(-3)^2 + (4)^2}$
			B1 for $ \overrightarrow{PQ} = 2$
11(b)(i)	$\begin{pmatrix} -3+2k\\4 \end{pmatrix}$ oe	1	
11(b)(ii)	$4\frac{1}{2}$ oe	2	B1 for expressing \overrightarrow{OM} as a multiple (by 4) of \overrightarrow{OT} or B1 for <i>T</i> is (6, 4); or for $\overrightarrow{OT} = \begin{pmatrix} 6\\4 \end{pmatrix}$

		-			
12(a)(i)	$\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ or $\frac{1}{3}(\mathbf{a} + \mathbf{b})$ or $\frac{\mathbf{a} + \mathbf{b}}{3}$ final answer	1			
12(a)(ii)	$\frac{1}{3}\mathbf{a} - \frac{2}{3}\mathbf{b} \text{ or } \frac{1}{3}(\mathbf{a} - 2\mathbf{b}) \text{ or } \frac{\mathbf{a} - 2\mathbf{b}}{3}$ final answer	1			
12(b)	Any two pairs of vectors from $\overrightarrow{OA} = \overrightarrow{BC}$ oe $\overrightarrow{OQ} = \overrightarrow{PC}$ oe $\overrightarrow{QA} = \overrightarrow{BP}$ oe	2	B1 for an	ny one pair of vectors stated	
	Alternative method: OA = BC OQ = PC $\angle AOQ = \angle BCP$		or	vo of these pairs of sides stated lese pairs of sides and this pair of ated	
13 (a) (i)	$6\mathbf{b} - 3\mathbf{a}$ oe isw	1		.01	
(ii)	$2\mathbf{b} - \mathbf{a}$ oe isw	1ft			
(iii)	2 : 3 cao NB www	4	M1+ M1 for two of		
	600	0	$\overrightarrow{CD} = \overrightarrow{C}$ $\overrightarrow{OD} = \overrightarrow{O}$ Al for	$\overrightarrow{DA} + \overrightarrow{AC}$ $\overrightarrow{B} + \overrightarrow{BD}$ $\overrightarrow{DB} + \overrightarrow{BD}$ $\overrightarrow{OC} = 2\mathbf{a} + 2\mathbf{b} \text{ ft or}$ $\overrightarrow{CD} = 3\mathbf{a} + 3\mathbf{b} \text{ ft or}$ $\overrightarrow{OD} = 5\mathbf{a} + 5\mathbf{b}$	
14 (a) (i)	$\begin{pmatrix} 5\\6 \end{pmatrix}$		1		
(ii)	$4.47 - 4.473$ or 4.5 or $\sqrt{20}$ or $2\sqrt{5}$		2	M1 for $\sqrt{((\pm 4)^2 + (\pm 2)^2)}$	
(b) (i)	(a) $\frac{1}{2}$ b - a or $\frac{1}{2}$ (b - 2 a) or		1		
	*	al answer			
	(b) $\frac{3}{2}\mathbf{b} - 3\mathbf{a}$ or $3(\frac{1}{2}\mathbf{b} - \mathbf{a})$ or $\frac{3\mathbf{b} - 6\mathbf{a}}{2}$ or equivalent two term answers final answer				
(ii)	3 : 1 cao		1	Dependent on correct (b)(i)(a) and (b)(i)(b)	

					1	
15 (a) (i)		6.08		1		
(ii)		(1)		2	M1 for $\overrightarrow{AF} = \overrightarrow{AH} + \overrightarrow{HF}$ oe or	
		(4)			B1 for $\frac{1}{2} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$	
					2(1)	
(iii)	(a)	$\begin{pmatrix} 4\\ -7 \end{pmatrix}$		1		
	(b)	$\overrightarrow{GD} = 2 \overrightarrow{FH}$ stated or appropriate numerical vector state	ement	1	dep	
(iv)		(9.5, 3)				
16 (a) (i)	b – a		1			
(ii)	3 b –	2 a	1			
(b) (i)	(b) (i) $\frac{4}{3}$ a		2FT	2FT M1 for such as $\overrightarrow{BO} + \overrightarrow{OC} + \overrightarrow{CE}$ Or $BD - ED$ or $-b + a + AE$ Or B1 for $(\overrightarrow{CE}) = \pm \frac{1}{3}$ their (a)(ii) Or $(\overrightarrow{DE}) = \pm \frac{2}{3}$ their (a)(ii)		
(ii)	trape	zium	1			
17 (a) (i) Convincing argument				www e.g. need to see $\mathbf{b} - \mathbf{a}$ and $\frac{5}{3}(\mathbf{b} - \mathbf{a})$ B1 for $\overrightarrow{DE} = \mathbf{b} - \mathbf{a}$ oe B1 for $\overrightarrow{DB} = \frac{2}{3}\mathbf{a}$ or $\overrightarrow{EC} = \frac{2}{3}\mathbf{b}$ oe soi		
(ii)	9:2:	5 oe		2	B1 for at least 3 : 5 oe seen	
18(a)	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$		1	·		
(b)	$\begin{pmatrix} -3 \\ -4 \end{pmatrix}$		1			
(c) 5	cao		1			
19 (a) (i)	$\begin{pmatrix} 4 \\ -5 \end{pmatrix}$		1			
(ii)	6.4(0	0) to 6.41 or $\sqrt{41}$ cao	1			

Neda