

3(b)(ii)	$\frac{1}{4} \mathbf{a}+\frac{1}{4} \mathbf{b} \text { or } \frac{1}{4}(\mathbf{a}+\mathbf{b})$		3 M1 the B1 or f or	for correct vector route along the lines of diagram for $\overrightarrow{B C}=\frac{\mathbf{a}}{2}$ soi or $\overrightarrow{N B}=\frac{1}{4}$ their $(\mathbf{b}-\mathbf{a})$ soi $\overrightarrow{N A}=\frac{3}{4}$ their $(\mathbf{a}-\mathbf{b})$ soi
4(a)(i)	$\binom{1}{-8}$	2	B1 for answer $\binom{1}{p}$ or $\binom{p}{-8}$ After 0 scored, SC1 for answer $\binom{-1}{8}$	
4(a)(ii)	$(-1,-2)$	1		
4(a)(iii)	10 and -4	3	B2 for answer 10 or -4 nfww or $n-3= \pm 7$ oe or $n^{2}-6 n-40[=0]$ or M1 for $\sqrt{74}=\sqrt{(-3-2)^{2}+(n-3)^{2}}$ oe	
4(b)	$2: 3$ nfww	3	$\mathbf{B} 2$ for $\overrightarrow{P L}=\frac{2}{5} \mathbf{q}$ oe or $\overrightarrow{R L}=-\frac{3}{5} q$ oe or M1 for correct vector route for $\overrightarrow{K L}$ along the lines of the diagram or $\overrightarrow{P L}=\frac{1}{2} q-\frac{1}{10} \mathrm{q}$ oe or $\overrightarrow{R L}=-\frac{1}{2} q-\frac{1}{10} q \quad$ oe	
5(a)(i)	11.7 or $11.66 \ldots$		2	M1 for $10^{2}+(-6)^{2}$ oe
5(a)(ii)	$(23,-14)$		2	B1 for one coordinate correct or for $\binom{30}{-18}$ seen After 0 scored, SC1 for $(-14,23)$
5(b)(i)	$4 \mathbf{p}+\mathbf{q}$		1	
5(b)(ii)	$3 \mathbf{p}+\frac{3}{5} \mathbf{q}$ oe simplified vector final answer		2	B1 for $\overrightarrow{B X}=\frac{3}{5} \mathbf{q}$ or $\overrightarrow{X B}=-\frac{3}{5} \mathrm{q}$ or M1 for a correct route along the lines of the diagram
5(b)(iii)	$4 \mathbf{p}-\frac{2}{5} \mathbf{q}$ oe simplified vector final answer		2	B1 for $\overrightarrow{C X}=-\frac{2}{5} \mathbf{q}$ or $\overrightarrow{X C}=\frac{2}{5} q$ or M1 for a correct route along the lines of the diagram

8(b)(i)	$-\frac{1}{3} \mathbf{a}+\mathbf{b}$ or $\frac{1}{3}(-\mathbf{a}+3 \mathbf{b})$	1	
8(b)(ii)	$\frac{1}{6} \mathbf{a}+\frac{1}{2} \mathbf{b}$ or $\frac{1}{6}(\mathbf{a}+3 \mathbf{b})$	2	M1FT for a correct vector route for $\overrightarrow{O Q}$
8(b)(iii)	$\begin{aligned} & {[\overrightarrow{A R}=]-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b} \text { or }} \\ & \frac{1}{2}(-\mathbf{a}+3 \mathbf{b}) \text { or }-\frac{1}{2}(\mathbf{a}-3 \mathbf{b}) \end{aligned}$	B2	M1 for $-\mathbf{a}+3 \times$ their $\mathbf{(b) (i i) ~ o r ~}$ $-\frac{2}{3} \mathbf{a}+\frac{1}{2} \text { their(b)(i) }+2 \times \text { their (b)(ii) }$
	$\begin{aligned} & O Q=\frac{1}{3} O R, O P=\frac{1}{3} O A \text { and } \\ & P O O R=A O R \end{aligned}$		M1 for two of $O Q=\frac{1}{3} O R, O P=\frac{1}{3} O A$ or $P \hat{O} R=A \hat{O} R$
	$\overrightarrow{A R}=\frac{3}{2} \overrightarrow{P B}$ oe	B1	Dep on B2
	Similar triangles $O \hat{P} Q=O \hat{A} R$ or Similar triangles $O \hat{Q} P=O \hat{R} A$		Dep on B2
9(a)	3 p	1	
9 (b)	$\frac{1}{2}(3 \mathbf{p}+5 \mathbf{q})$ oe	1	
9(c)	$\frac{1}{2}(3 \mathbf{p}+9 \mathbf{q})$ oe	1	FT $2 \mathbf{q}$ oe + their (b) isw
9(d)	1.5 oe	2	B1 for $[\overrightarrow{D E}=] \mathbf{p}+3 \mathbf{q}$; or for $k(\mathbf{p}+3 \mathbf{q})$
10(a)	$\angle B A X=\angle O C X$, alternate [angles] $\angle A B X=\angle C O X$, alternate [angles] $\angle A X B=\angle C X O$, [vertically] opposite		B1 for two correct pairs of angles B1 for correct reason for one pair of angles
10(b)(i)	${ }^{4}$	1	
10(b)(ii)	$\mathbf{a}-6 \mathbf{c}$ or $3(3 \mathbf{a}-2 \mathbf{c})$		B1 for answer $9 \mathbf{a}+k \mathbf{c}$ or $k \mathbf{a}-6 \mathbf{c}(k \neq 0)$
10(c)(i)	3:2		B1 for $3 k: 2 k$, where k is an integer
10(c)(ii)	9:4	1	FT their 3^{2} : their 2^{2}
10(c)(iii)	4:5	1	
11(a)	7	3	$\begin{aligned} & \text { M1 for }\|\overrightarrow{O P}\|=\sqrt{(-3)^{2}+(4)^{2}} \\ & \text { B1 for }\|\overrightarrow{P Q}\|=2 \end{aligned}$
11(b)(i)	$\binom{-3+2 k}{4}$ oe	1	
11(b)(ii)	$4 \frac{1}{2}$ oe	2	B1 for expressing $\overrightarrow{O M}$ as a multiple (by 4) of $\overrightarrow{O T}$ or $\mathbf{B 1}$ for T is $(6,4)$; or for $\overrightarrow{O T}=\binom{6}{4}$

12(a)(i)	$\frac{1}{3} \mathbf{a}+\frac{1}{3} \mathbf{b}$ or $\frac{1}{3}(\mathbf{a}+\mathbf{b})$ or $\frac{\mathbf{a}+\mathbf{b}}{3}$ final answer	
12(a)(ii)	$\frac{1}{3} \mathbf{a}-\frac{2}{3} \mathbf{b}$ or $\frac{1}{3}(\mathbf{a}-2 \mathbf{b})$ or $\frac{\mathbf{a}-2 \mathbf{b}}{3}$ final answer	
12(b)	Any two pairs of vectors from $\overrightarrow{O A}=\overrightarrow{B C}$ oe $\overrightarrow{O Q}=\overrightarrow{P C}$ oe $\overrightarrow{Q A}=\overrightarrow{B P}$ oe Alternative method: $\begin{aligned} & O A=B C \\ & O Q=P C \\ & \angle A O Q=\angle B C P \end{aligned}$	B1 for any one pair of vectors stated B1 for two of these pairs of sides stated or one of these pairs of sides and this pair of angles stated
13 (a) (i) (ii) (iii)	$6 \mathbf{b}-3 \mathbf{a}$ oe isw $2 \mathbf{b}-\mathbf{a}$ oe isw 2 : 3 cao NB www	$\mathrm{M} 1+\mathrm{M} 1$ for two of $\begin{aligned} & \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \\ & \overrightarrow{C D}=\overrightarrow{C B}+\overrightarrow{B D} \\ & \overrightarrow{O D}=\overrightarrow{O B}+\overrightarrow{B D} \end{aligned}$ A1 for $\overrightarrow{O C}=2 \mathbf{a}+2 \mathbf{b} \mathrm{ft}$ or $\begin{aligned} & \overrightarrow{C D}=3 \mathbf{a}+3 \mathbf{b} \mathrm{ft} \text { or } \\ & \overrightarrow{O D}=5 \mathbf{a}+5 \mathbf{b} \end{aligned}$
(a) (i) (ii) (b) (i) (ii)	$\binom{5}{6}$ $4.47-4.473$ or 4.5 or $\sqrt{ } 20$ or $2 \sqrt{ } 5$ (a) $\frac{1}{2} \mathbf{b}-\mathbf{a}$ or $\frac{1}{2}(\mathbf{b}-2 \mathbf{a})$ or equivalent two term answers final answer (b) $\frac{3}{2} \mathbf{b}-3 \mathbf{a}$ or $3\left(\frac{1}{2} \mathbf{b}-\mathbf{a}\right)$ or $\frac{3 \mathbf{b}-6 \mathbf{a}}{2}$ or equivalent two term answers final answer 3:1 cao	1 M1 for $\sqrt{ }\left((\pm 4)^{2}+(\pm 2)^{2}\right)$ $\mathbf{1}$ $\mathbf{1}$ Dependent on correct (b)(i)(a) and (b)(i)(b)

