Trigonometry Worksheet

1

$A B C D$ is the floor plan of an exhibition hall with dimensions shown in metres. Points A, B, C and D all lie on the same horizontal plane.
(a) Calculate angle $B C D$.
(b) A light is attached to the ceiling vertically above B. The angle of elevation of the light from C is 8.2°.

Calculate the angle of elevation of the light from A.
$P Q$ is a vertical pole.
A rope is attached from the top of the pole, P, to a point on the ground, R. $P R=20 \mathrm{~m}, R Q=11 \mathrm{~m}$ and $R \hat{Q} P=90^{\circ}$.
(a) Show that $P Q=16.70 \mathrm{~m}$, correct to 2 decimal places.
(b)

A second rope is attached from P to a point S.
$P \hat{Q} S=90^{\circ}$ and $R S=30 \mathrm{~m}$.
The angle of elevation of P from S is 36°.
Calculate $R \hat{Q} S$.
$R \hat{Q} S=$
(c)

NOT TO
SCALE

A third rope is attached from P to a point T.
$T \hat{P} Q=40^{\circ}$ and $P \hat{Q} T=97^{\circ}$.
Calculate $P T$.

NOT TO
SCALE
$A B C D$ is a field on horizontal ground.
The bearing of B from A is 070°.
The bearing of D from A is 125°.
C is due south of B and due east of D. $A D=290 \mathrm{~m}$ and $B D=350 \mathrm{~m}$.
(a) Calculate the bearing of D from B.
(b) A vertical mast is positioned at D.

The angle of elevation of the top of the mast from A is 10°.
Calculate the angle of elevation of the top of the mast from C.

NOT TO
SCALE

In triangle $A B C, A C=6.4 \mathrm{~cm}, B C=9.5 \mathrm{~cm}$ and $B \hat{A} C=79^{\circ}$.
(a) (i) Calculate $A \hat{B} C$.

$$
\begin{equation*}
A \hat{B} C= \tag{3}
\end{equation*}
$$

(ii) Calculate the area of triangle $A B C$.
(b)

The same triangle $A B C$ forms the horizontal base of a pyramid $A B C D$. $B D=9.8 \mathrm{~cm}$ and $C D=8.2 \mathrm{~cm}$.
$B \hat{A} D=C \hat{A} D=90^{\circ}$.
(i) Calculate $B \hat{D} C$.

$$
\begin{equation*}
B \hat{D} C= \tag{3}
\end{equation*}
$$

(ii) Calculate the angle of elevation of D from C.

5 [Volume of pyramid $=\frac{1}{3} \times$ base area \times height]

$A B C D E$ is a rectangular-based pyramid.
$A C$ and $B D$ intersect at F.
$E F$ is perpendicular to $F C$.
$A D=10 \mathrm{~cm}, D C=6 \mathrm{~cm}$ and $E C=12 \mathrm{~cm}$.
(a) Show that $E F=10.5 \mathrm{~cm}$, correct to 1 decimal place.
(b) Find the volume of the pyramid.
(c) Calculate $D \hat{E} C$.

$$
\begin{equation*}
D \hat{E} C= \tag{3}
\end{equation*}
$$

(d) Calculate the area of triangle $D E C$.

6 A light, L, is fixed on a building 8 m above the base, B, of the building.
(a)

A point, P, is on the horizontal ground 12 m from B.
Calculate the angle of elevation of L from P.
(b)

A ladder is placed on the ground at Q to reach the light, L.
The ladder makes an angle of 70° with the ground.
Calculate $Q L$.
\qquad
(c)

A vertical pole, $R S$, of length 1.6 m is placed touching the horizontal ground. The light produces a shadow, $T S$, of the pole on the horizontal ground. $L R T$ is a straight line and $T B=6.5 \mathrm{~m}$.

Calculate $T S$.

NOT TO SCALE

A field is in the shape of a quadrilateral $P Q R S$.
A path crosses the field from P to R.
$P Q=280 \mathrm{~m}, R S=146 \mathrm{~m}$ and $P R=325 \mathrm{~m}$.
S is on a bearing of 042° from $P, P \hat{S} R=108^{\circ}$ and $R \hat{P} Q=38^{\circ}$.
(a) Calculate the bearing of R from P.
(b) (i) Show that $Q R=202 \mathrm{~m}$, correct to the nearest metre.

The diagram shows the positions of two boats, A and B, drawn to a scale of $1: m$. The actual distance between the two boats is 4 km .
(a) Find m, giving your answer correct to 1 significant figure.
\qquad
(b) Measure the bearing of A from B.
\qquad
(c) A third boat is positioned at C.
C is on a bearing of 120° from A and on a bearing of 195° from B.

Find and label C on the diagram.
(d) Find, by measurement, the actual distance in kilometres from A to C.
(e)

NOT TO
SCALE

The diagram shows the positions of the boats, A and B, and a harbour, H. $A B=4 \mathrm{~km}, A H=6 \mathrm{~km}$ and $A \hat{B} H=70^{\circ}$.
(i) Calculate $A \hat{H} B$.

$$
\begin{equation*}
A \hat{H} B= \tag{3}
\end{equation*}
$$

(ii) The boat at A travels in a straight line to the harbour at H.

The average speed of the boat is $p \mathrm{~km} / \mathrm{h}$.
It takes 12 minutes 20 seconds for the boat to travel from A to H.
Calculate p.

$$
\begin{equation*}
p= \tag{3}
\end{equation*}
$$

The diagram shows a triangular prism.
$A C=15 \mathrm{~cm}, B C=14 \mathrm{~cm}$ and angle $A C B=27^{\circ}$.
(a) Calculate $A B$.

$$
A B=
$$

(b) The length of the prism is $p \mathrm{~cm}$ and the volume of the prism is $1000 \mathrm{~cm}^{3}$.

Calculate p.

$$
\begin{equation*}
p= \tag{3}
\end{equation*}
$$

(c) The prism is to be packed in a carton.

The carton is a cuboid of size 15 cm by $p \mathrm{~cm}$ by $h \mathrm{~cm}$.
Calculate the smallest possible value of h.

$$
\begin{equation*}
h= \tag{2}
\end{equation*}
$$

A yacht sails the triangular route shown.
The bearing of B from A is 135°.
$B C=3.7 \mathrm{~km}, A C=2.8 \mathrm{~km}$ and $A \hat{B} C=42^{\circ}$.
(a) Show that $C \hat{A} B=62.2^{\circ}$, correct to 1 decimal place.
(b) Find the bearing of A from C.
(c) The yacht sails from A to B to C to A.

Calculate the total length of the route.

A vertical mast, $X Y$, is positioned on horizontal ground.
The mast is supported by four cables attached to the mast at P and to the ground at points A, B, C and D.
Y is the centre of the square $A B C D$.
$P Y=7.50 \mathrm{~m}$.
(a) Given that $A B=3.65 \mathrm{~m}$, show that $A Y=2.58 \mathrm{~m}$ correct to 3 significant figures.
(b) Calculate the length of one of the cables used to support the mast.
(c) Calculate $A \hat{P} B$.

Answer

(d) The angle of elevation of X from A is 77.0°.
(i) Calculate the height, $X Y$ of the mast.

> Answer
(ii) Calculate the angle of elevation of X from the midpoint of $A B$.

$A B C D E$ is the cross-section of a building.
All the lengths are given in metres.
(a) Calculate $D C$.
(b) Calculate angle $E A B$.

Triangle $P Q R$ has a right angle at P, angle $P R Q=38^{\circ}$ and $R Q=12 \mathrm{~cm}$.
(a) Calculate $P Q$.

Answer
cm [2]
(b) S is a point such that angle $P R S$ is a right angle and $Q S=10 \mathrm{~cm}$.

Calculate the two possible values of angle $Q S R$.
\qquad or

14 The diagram shows the position of two villages A and B.

(a) Measure the bearing of B from A.

Answer
(b) The bearing of village C from A is 265°.

Work out the bearing of A from C.

$A B C D$ is a level playing field.
$A B=65 \mathrm{~m}, B C=70 \mathrm{~m}$ and $C A=110 \mathrm{~m}$.
$C \hat{D} A=70^{\circ}, D \hat{A} C=58^{\circ}$ and C is due South of B.
(a) Calculate the bearing of A from C.
(b) Calculate $A D$.
(c) There are two vertical trees, $A X$ and $C Y$, each of height 17 m , one at each end of the path $A C$.
(i) Calculate the angle of elevation of Y from B.

> Answer

16 (a)

The diagram shows a vertical wind turbine with blades 30 m long.
The blades are stationary with the point A being the maximum distance possible from the horizontal ground.
The point B is such that the angle of elevation of A from B is 34° and the angle of elevation of the centre of the blades, C, from B is 25°.

Calculate the distance $A B$.
(b) A different wind turbine, shown in the diagram on the next page, has the centre of its blades, F, 75 m from the base of the turbine, D.
Point E is on sloping ground, 180 m from F and 130 m from D.
Calculate the angle of depression of E from F.

17 (a)

In the framework $A B C D, B D=3 \mathrm{~m}$. $B \hat{D} A=27^{\circ}, B \hat{C} D=41^{\circ} . D \hat{B} C$ and $D \hat{A} B$ are right angles.
(i) Find $A D$.
(ii) Find $C D$.
(b) In triangle $P Q R, P Q=3 \mathrm{~m}$ and $Q R=5 \mathrm{~m}$. The area of triangle $P Q R=6 \mathrm{~m}^{2}$.

Find the two possible values of $P \hat{Q} R$.
or

18 In the diagram, the bearing of B from A is 170°.
The bearing of A from C is 060°.
The bearing of C from B is x°.

Given that triangle $A B C$ is isosceles, find the three possible values of x.

Answer $x=$ \qquad or \qquad or

19 In the diagram, $A B=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $D C=6.5 \mathrm{~cm}$. $B \hat{A} D=26^{\circ}$ and $D \hat{A} C=30^{\circ}$.

(a) Calculate $B C$.
(b) Calculate the obtuse angle $A D C$.
(a)

Answer

In triangle $A B C, A B=4 \mathrm{~m}, B C=6 \mathrm{~m}$ and $A \hat{B} C=67^{\circ}$.
(i) Show that the area of triangle $A B C$ is $11.05 \mathrm{~m}^{2}$ correct to 2 decimal places.
(ii)

In triangle $P Q R, P Q=5 \mathrm{~m}$ and $Q R=7 \mathrm{~m}$.
Area of triangle $P Q R=$ Area of triangle $A B C$.
Find the acute angle $P Q R$.
(iii)

In the parallelogram $W X Y Z, W X=8 \mathrm{~m}$ and $W Z=2 \mathrm{~m}$. Area of parallelogram $W X Y Z=$ Area of triangle $A B C$.

Find the obtuse angle $Z W X$.

The diagram shows the positions, P, Q, R and S, of four hotels.

The bearing of Q from P is 065° and the bearing of R from Q is 210°. $P Q=500 \mathrm{~m}, S Q=335 \mathrm{~m}$ and $P Q S=90^{\circ}$.
(a) Calculate $P \hat{Q} R$.
(b) Calculate the shortest distance from P to $Q R$.

Answer.. m [2]
(c) Calculate the bearing of S from P.

A, B, C and D are four points on level ground. $B D C$ is a straight line.
$A D=30 \mathrm{~m}$ and $D C=64 \mathrm{~m}$.
$A \hat{B} D=37^{\circ}$ and $A \hat{D} B=58^{\circ}$.
(a) Calculate $A B$.
m [3]
(b) Calculate $A C$.

Answer
m [4]
(c) Calculate the area of triangle $A D C$.

Answer

(d) A vertical tower stands at A.
P is the point on the line $B C$ such that the angle of depression from the top of the tower to the line $B C$ is greatest.

Given that this angle of depression is 34°, calculate the height of the tower.

Answer

\qquad m [3]

The diagram shows four points, A, B, P and Q, at sea.
B is due South of A and P is due East of A.
$A P=3.73 \mathrm{~km}, B P=5.47 \mathrm{~km}, A Q=5.32 \mathrm{~km}$ and $P \hat{A} Q=25^{\circ}$.
(a) Calculate $A \hat{B} P$.
(b) Calculate $P Q$.
(c) A boat sailed in a straight line from Q to A.
(i) Find the bearing of A from Q.

Answer
(ii) A lighthouse is situated at A.

The top of the lighthouse is 30 m above sea level.
Calculate the angle of depression of the boat from the top of the lighthouse when the boat is 100 m from A.

Answer
24 The scale drawing shows three towns, A, B and C.
The scale of the drawing is 1 cm to 25 km .

(a) Measure the bearing of A from C.
(b) Find the bearing of C from A.
\qquad
(c) Find the actual distance, in kilometres, from B to C.

