	1(a)	$\frac{30}{x} \times 60[=]\frac{1800}{x}$		1	l e.g. $\frac{30 \times 60}{x} [=] \frac{1800}{x}$ or $\frac{30}{\left(\frac{x}{60}\right)} [=] \frac{1800}{x}$		
	1(b)	$\frac{600}{x-25} - \frac{1800}{x} = 8$		M1	or $\frac{600}{x-25} = \frac{1800}{x} + 8$ or $\frac{600}{x-25} - 8 = \frac{1800}{x}$		
		$600x - 1800x + 45000 = 8x^2 - 200x$ or better		M1	Strict FT correct elimination of fractions and brackets		
		Correct rearrangement to $x^2 + 125x - 5625 = 0$		A1	A0 if any errors or omissions in working		
	1(c)	$\frac{-125 \pm \sqrt{125^2 - 4 \times (-5625)}}{2 \times 1} \text{ or } -62.5 \pm \sqrt{9531.25}$		B2	B1 for $\sqrt{125^2 - 4 \times (-5625)}$ oe or $\frac{-125 \pm \sqrt{their 38125}}{2 \times 1}$ or $(x + 62.5)^2$		
		35.1, -160.1		BL			
	2a	$\frac{x}{12} \times \frac{x-1}{11} = \frac{14}{33}$ M	1	0			
		$x^{2}-x-56=0$ oe Alternative: $x(x-1) = 56$ cao	1				
		(x-8)(x+7) [= 0] or [x =] $\frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times -56}}{2 \times 1}$ Alternative: 8(8-1) = 56 soi	1 De FT qua	o on N facto dratic	A1 prisation/use of formula for <i>their</i> 3-term		
	3(a)	[W =] x + 5 [L =] 2(x + 5) oe final answers	2	B1 or	B1 for $[W =] x + 5$ or B1FT for $[L =] 2 \times their$ algebraicW		
	3(b)	$(x+5) \times 2(x+5) + 2(x \times (x+5))$ + 2(x \times 2(x+5)) oe	M2	FT and B1 e.g + 5 or 2	FT <i>their</i> algebraic expressions in x for length and width B1FT for two different areas seen e.g. two of $(x + 5) \times 2(x + 5)$, $x(x + 5)$, $x \times 2(x + 5)$ or $2((x + 5) \times 2(x + 5) + x(x + 5) + x \times 2(x + 5))$		
		$2x^{2} + 20x + 50 + 2x^{2} + 10x + 4x^{2} + 20x = 210$	M 1	Set Mu and	e equal to 210 and expansion of brackets. Ist have three different areas from width a length of form $ax + b$, a and $b \neq 0$		
Megale +92 33	ecture.com 6 7801123	Correct simplification to $4x^{2} + 25x - 80 = 0$	A1		http://youtube.com/MegaLecture Megalecture@gmail.com		

3(c)	$\frac{\frac{-25 \pm \sqrt{25^2 - 4 \times 4 \times -80}}{2 \times 4}}{\frac{-25}{8} \pm \sqrt{\left(\frac{25}{8}\right)^2 - \frac{-80}{4}}}$ oe or	B2		B1 for $\sqrt{25^2 - 4 \times 4 \times -80}$ oe or $\frac{-25 \pm []}{2 \times 4}$ oe or $\left(x + \frac{25}{8}\right)^2$	
	2.33 and -8.58	E	31		
4(a)(i)	$\frac{12 \times 60}{x}$ oe	1			
4(a)(ii)	$\frac{8 \times 60}{x - 1.5}$ oe	1	A:	fter 0 in (i) and (ii), SC1 for $\frac{8}{x-1.5}$ and (a)(i)	
			X		
4(a)(iii)	$\frac{720}{x} + \frac{480}{x - 1.5} = 110 \text{ oe}$	M1	F	Γ <i>their</i> (a)(i) and (a)(ii) if functions of x	
	$\frac{720(x-1.5)+480x}{x(x-1.5)} = 110 \text{ or}$	M1	D	ep on equation of form $\frac{c}{px} + \frac{d}{qx+r} = e$ where <i>p</i> ,	
	720(x - 1.5) + 480x = 110x(x - 1.5)		q, Al fo: or	<i>r</i> , <i>c</i> , <i>d</i> and <i>e</i> are numeric and non zero, ND either correctly uses a common denominator r <i>their</i> fractions correctly removes <i>their</i> fractions	
	$720x - 1080 + 480x = 110x^2 - 165x$	A1	Co	prrect elimination of correct brackets	
	With a minimum of one intermediate step establishes $22x^2 - 273x + 216 = 0$	A1			
4(a)(iv)	$\frac{-(-273) \pm \sqrt{(-273)^2 - 4 \times 22 \times 216}}{2 \times 22}$ or $\frac{273}{44} \pm \sqrt{\left(\frac{273}{44}\right)^2 - \left(\frac{216}{22}\right)}$	B2	B or or	1 for $\sqrt{(-273)^2 - 4 \times 22 \times 216}$ for $\frac{-(-273) \pm \sqrt{their 55521}}{2 \times 22}$ for $\left(x - \frac{273}{44}\right)^2$	
	11.56 and 0.85 cao	B1			
5	$\frac{v}{2v+3}$ final answer nfww	3	B B	1 for $v(v-8)$ seen 1 for $(2v+3)(v-8)$ seen	

6(a)	$3x^2 + 16x$	-460 = 0 correctly derived	4				
				B1 for $(x+4)(3x+4)$ oe and			
				M1 for expanding brackets and collecting like terms and			
				M1 for <i>their</i> area = 476 and			
				A1 for correct simplification leading to $3x^2 + 16x - 460 = 0$			
6(b)	10 and $-\frac{46}{3}$ oe (-15.3)		3				
				B2 for $(x - 10)(3x + 46)$ Or			
				M1 for such as $(x + a)(3x + b)$ with $ab = -460$ or $3a + b = 16$			
				A1FT for solutions from their factors			
6(c) .	[Height =] 14 [Length =] 34		2FT	B1FT for either, or for both correct but in the wrong places			
7	7 –4 or 1.5 oe		3				
				B1 for $2x^2 + 5x - 12 = 0$ and			
				M1 for $(2x - 3)(x + 4) = 0$			
				OR			
				M1 for FT factorising their 3-term quadratic equation			
				Or for correct FT substitution into formula oe			
				and			
ļ				A1FT for solutions from their quadratic equation			
8(b) (i	$(PQ =) \frac{17}{x+5}$		1				
(ii)	3 <i>x</i>	$x^{2} + 15x - 85$ (=0) oe shown	3	M1 for $(AB =)$ their $(PQ) + 3$ and			
				M1 for (their($PQ + 3$) × $x = 17$ or			

(iii)			3.38 -8.38		3		B1 for $\sqrt{15^2 - 4 \times 3 \times (-85)}$ soi and			
							B1 for $\frac{-15 \pm \sqrt{their 1245}}{2 \times 3}$ soi and			
							M1 fc	M1 for both real values of $\frac{p \pm \sqrt{q}}{r}$		
(iv)			20.8				M1 for their(<i>PQ</i>) and $x + 5$ evaluated using $x =$ the positive root from (b)(iii). or for their perimeter in algebraic form			
9	9 (i)	EIT Wid	THER $dth = \frac{18 - 4x}{2} \text{oe}$	OR Width = $\frac{10}{2x}$ oe			M1			
	(ii)	3.85	$\frac{-4x}{2} \times 2x = 10$ oe 5 and 0.65 cao	10 oe $4x + \frac{20}{2x} = 18$ oe o			A1 3	A1 isw B2 for 3.850 to 3.851 and 0.649 to 0.650 or one correct answer or 3.9 and 0.6 Or if in form $\frac{p \pm \sqrt{q}}{p}$ or $\frac{p + \sqrt{q}}{p}$ or		
								$\frac{p - \sqrt{q}}{r}$ B1 for $p = 9$ and $r = 4$ or $q = 41$		
	(iii)	(iii) $6.35 \text{ to } 6.45 \text{ or } - 6.45 \text{ to } - 6.35 \text{ oe}$					1	1		
10	(a) (i) -4.62 -2.38 final and		inswer	9		2	B1 for one value SC1 for both –4.6 and –2.4			
(ii)			(B =) 7 (C =) 11				3	3 M1 for $(x + \frac{7}{2})^2 = \frac{5}{4}$ and B1 for one correct value		
11 (c) (i)		h r	$h^{2} + (h + 7)^{2} = 23^{2}$ leading to correct rearrangement		2		M1 for $h^2 + (h+7)^2 = 23^2$		$h^2 + (h+7)^2 = 23^2$	
(ii)			$\frac{h}{2}$ (h + 7) oe isw		1					
(iii)		120 cao		1						
(iv)		1	2.4, -19.4				B2 for 12.40 Or if and <i>r</i> and F	or of and in f r = 2 B1 f	ne correct solution, or for 12.38 to d - 19.38 to $-19.40form \frac{p \pm \sqrt{q}}{r}, B1 for p = -72For q = 1009 or \sqrt{q} = 31.7 to 31.8$	
(v)		5	4.76 to 54.8		1FT	-				

12(a) (i)

$$\frac{320}{x}$$
 isw
 1

 (ii)
 $2x^2 + 5x - 20 (= 0)$ correctly found
 3
 M2 for their $\frac{320}{x} - their \frac{320}{x+2\frac{1}{2}} = 80$ oe

 M2 for their $\frac{320}{x} - their \frac{320}{x+2\frac{1}{2}} = -80$ oe
 M2 for their $\frac{320}{x+2\frac{1}{2}} = -80$ oe

 SC1 after 0 for $\frac{320}{x+2\frac{1}{2}}$ seen.

 (iii)
 2.15
 -4.65

 3
 B1 for $\sqrt{5^2 - 4x \cdot 2x(-20)}$ soi and

 B1 for $\frac{-5 \pm \sqrt{Heir} \cdot 185}{2x \cdot 2}$ soi

 (iv)
 69

 2
 M1 for $\frac{320}{heir + ve \cdot x + 2.5}$ oe

 13
 (a) (i)
 $40 - x$

 (ii)
 $x^2 - 40x + 250 = 0$

 (iii)
 $x^2 - 40x + 250 = 0$

 (iii)
 $7.8 \cdot 32.2$

 3
 B2 for $7.8 \cdot and 32.2$ or better or

 B1 for $\sqrt{-(-40)^2 - 4x + 250} = 0$
 1

 (iii)
 $7.8 \cdot 32.2$