

6	$\frac{5 n+7}{(n+3)^{2}}$ oe final answ			4	B2 for nth term for numerator sequence $5 n+7$ oe final answer or B1 for $5 n+k$ oe seen AND B2 for nth term for denominator sequence $(n+3)^{2}$ oe final answer or B1 for quadratic expression in n seen for denominator sequence Maximum 3 marks if final answer incorrect
7(a)	48			1	
7(b)	$n^{2}+5 n-2$ oe final answer			3	B2 for answer $n^{2}+5 n+k$ oe or for $5 n-2$ oe seen or B1 for answer $n^{2}+a n+b$ or for $5 n+k$ oe seen
8(a)	$\begin{array}{\|ccc} 9 & 12 & 15 \\ 12 & 17 & 22 \end{array}$	2	B1 for one row correct		
8(b)	$5 n-3$ oe final answer	2	B1 for $5 n+k$ oe seen		
8(c)	57	2	M1 for their $(5 n-3)=92$ or $\mathbf{B} 1$ for $n=19$ soi or for answer 19		
9(a)	$\begin{array}{ll} \frac{23}{24} & \frac{27}{28} \end{array}$	1			
9(b)	300				
9(c)	$\frac{4 n-1}{4 n} \text { oe }$			B1 for $\frac{\cdots}{4 n}$, or for $4 n-1$ oe	
10(a)	71		1		
10(b)	$\begin{aligned} & {[p=] 2} \\ & {[q=] 1} \end{aligned}$		1	Bot	correct
10(c)	$\begin{aligned} & A=2 \\ & B=4 \\ & C=1 \end{aligned}$		2	B1 for two correct or for $(n+1)^{2}=n^{2}+2 n+1$ or for $\begin{gathered} (n+\text { their } q)^{2}=n^{2}+2 n(\text { their } q)+(\text { their } q)^{2} \\ A+B+C=7 \end{gathered}$ or M1 for $4 A+2 B+C=17$ $9 A+3 B+C=31$	
11(a)	49, 19, 30		1		
11(b)(i)	$3 n+4$ oe and isw		1		
11(b)(ii)	$(n+2)^{2}$ oe		1		
11(c)	$n^{2}+n ;$ or $n(n+1)$		2	M1 for attempt at their(bii) - their(bi), provided both parts are different expressions in n, and the answer space also contains an expression in n, or is empty: or for a valid method.	

	(a) (b) (c) (d) (i) (ii)	7, 21 $2 n-1$ oe FT $3 \times$ their (b) provided this is a function of n; or $6 n-3$ oe 48 $3 n^{2}$		$\begin{gathered} 1 \\ 1 \\ 1 \downarrow \\ 1 \\ 2 * \end{gathered}$	M1 for a sensible method, e.g. writing terms as $3 \times 1,3 \times 4,3 \times 9, \ldots$ or $\mathbf{B} 1$ for $\mathrm{A} n^{2}+\mathrm{B} n+\mathrm{C}, \mathrm{A} \neq 0$ from a valid method.
23	(a) 201 (b) 36 (c) (i) (ii)	$9 x-9 y$, or $9 y-9 x$, or any equiv. " 123 is not a multiple of 9 " oe		$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	B1 for $(n=) 223$ seen
24	(a) (b)	$\begin{array}{lc} \hline 132 \\ 87 \\ 219 \text { or }\{\{\text { their } 132 ~ & +\mid \text { their87 } \mid\} \\ \hline \end{array}$	1 1 1	done	

