	1(a)	a=13 b=21 or 8+ their (i)							
b		z=x+y oe							
2	(a) (b)	$p = 11$ $q = 30$ $r = 60$ $s = 6$ $x = 2n + 1 \text{ oe}$ $y = n(n + 1) \text{ oe}$ $z = 2n(n + 1) \text{ oe } \sqrt{2 \times y}$	all four	B2 B1 B1 B1	2	sc1 for 2 or 3 correct In (b), accept any unsimplified form but -1, once, if not given explicitly			
	(c)	102		B1	1 [6]				
	3a)	24 35	1			0			
	3b)	<i>n</i> (<i>n</i> +2) oe	2	B1 fo	B1 for quadratic expression in <i>n</i>				
3	c)(i)	35	3	OR M1 fo M1 fo	B2 for 35 × 37 or 35.8 to 35.9 OR M1 for <i>their</i> $n(n + 2) = 1358$ M1 for solution of <i>their</i> quadratic $\frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times (-1358)}}{2 \times 1}$				
30	c)(ii)	7	2	M1F	T for 13	$358-their (c)(i) \times (their (c)(i) + 2)$			
	k(a) k(b)	$\frac{14 17}{3n+2}$ oe final answer				k oe seen 2 oe seen $j \neq 0$			
2	4(c) 12			3 M1 for substitution of 20 into their $(3n + 2)$ or for 62 seen or for 38 seen M1 for their $(3k + 2) = 100 - their 62$					
5	5(a)(i)	20 24	1	Both c	orrect				
5	(a)(ii)	4n + 4 oe final answer	2	B1 for	4n+k	oe seen			
5	(a)(iii)	36	2	M1 for	r <i>their</i> ((4p+4) = 150 soi			
5	i(b)(i)	44	2	M1 for	$r \frac{26-2}{4}$	- or difference = $[-]6$			
5	(b)(ii)	50-6n oe final answer	2	B1 for	-6n + k	t oe seen			

6	$\frac{5n+7}{(n+3)^2}$ oe final answer				4	B2 for <i>n</i> th term for numerator sequence 5n + 7 oe final answer or B1 for $5n + k$ oe seen AND B2 for <i>n</i> th term for denominator sequence $(n + 3)^2$ oe final answer or B1 for quadratic expression in <i>n</i> seen for denominator sequence Maximum 3 marks if final answer incorrect		
7(a)	48				1			
7(b)	$n^2 + 5n - 2$ oe final answer				3	B2 for answer $n^2 + 5n + k$ oe or for $5n - 2$ oe seen or B1 for answer $n^2 + an + b$ or for $5n + k$ oe seen		
8(a)	9 12 15 12 17 22		2	B 1	B1 for one row correct			
8(b)	5 $n-3$ oe final answer		2	B 1	for 5n	k + k oe seen		
8(c)	57		2	M1 or	M1 for <i>their</i> $(5n-3) = 92$ or B1 for $n = 19$ soi or for answer 19			
9(a)	$\frac{23}{24} \frac{27}{28}$			1	5			
9(b)	300			1	0			
9(c)	$\frac{4n-1}{4n}$ oe		2	2	B1 fc	or $\frac{\dots}{4n}$, or for $4n - 1$ oe		
10(a)	71	\bigcirc		1				
10(b)	$ \begin{bmatrix} p = 1 & 2 \\ [q = 1 & 1 & 2 \end{bmatrix} $			1	Botl	n correct		
10(c)	$\begin{array}{c} A = 2\\ B = 4\\ C = 1 \end{array}$			2	or fo or fo (<i>n</i> +	For two correct or $(n + 1)^2 = n^2 + 2n + 1$ or <i>their</i> $q)^2 = n^2 + 2n(their q) + (their q)^2$ A + B + C = 7 11 for $4A + 2B + C = 17$ 9A + 3B + C = 31		
11(a)	49, 19, 30			1				
11(b)(i)	3n + 4 oe and isw			1				
11(b)(ii)	$(n+2)^2$ oe			1				
11(c)	$n^2 + n$; or $n(n + 1)$			2	both p answe empty	for attempt at <i>their</i> (bii) – <i>their</i> (bi), provided barts are different expressions in n , and the er space also contains an expression in n , or is $\frac{1}{2}$: a valid method.		

	12(a)	Correct pattern drawn		
	12(b)	15 21 10 15	B1 for 2 or	3 correct
	12(c)	n^2 oe final answer	e.g. $\left(\frac{1}{2}n^2 + \frac{1}{2}n^2\right)$	$(\frac{1}{2}n) + (\frac{1}{2}n^2 - \frac{1}{2}n)$
	12(d)	465		
	12(e)	$n^2 - \left(\frac{1}{2}n^2 + \frac{1}{2}n\right)$		
		or $\left(\frac{1}{2}(n-1)^2 + \frac{1}{2}(n-1)\right)$		
		$n^{2} - \left(\frac{1}{2}n^{2} + \frac{1}{2}n\right)$ or $\left(\frac{1}{2}(n-1)^{2} + \frac{1}{2}(n-1)\right)$ or $\left(\frac{1}{2}n^{2} + \frac{1}{2}n\right) - n$		
		leading to $\left(\frac{1}{2}n^2 - \frac{1}{2}n\right)$ without error AG		
	12(f)	$m = 9 \operatorname{cao} 3$	M1 for $\frac{1}{2}m^2$	
			or B2 for $[m]$ or B1 for val at least $m = 7$	$9m = 0$ or $m^2 = 9m$ or $m - 9 = 0$ or $m + 1 = 10$ = 9] $5m = 45$ and crosses = 45 ues for $5m$ and the number of crosses seen for 7 and $8for answer 11$
13	(a) (i)	2 <i>n</i> – 1 oe	1	
	(ii)	421	1	
	(b) (i)	8	1	
	(ii)	14	1	
14	(a) (i)	-6	1	
	(ii)	15	2*	C1 for $15^2 - 5 \times 15$ or for 15, -10 OR M1 for $(p + 10)(p - 15)$ [= 0]
	(b)	4	2*	B1 for $3 \times 5^2 - 5k = 55$ oe
15	(a)	43 47 cao	1	
	(b)			
	(c) (-	-)10	1	
	(d)			
	(e)			

16	95 – 6 <i>n</i> oe isw		2	B1 for – 6 <i>n</i> seen
(ii)	16 cao		1	
(b) (i)	2 <i>n</i> – 3		2	M1 for $(n+1)^2 - 4(n+1)$ seen
(ii)	39 cao		1	
17 (a)	1		1	
(b)	41 40 81 (all three)		1	
(c)	$(2n+1)^2$ oe		1	
18 (a)	23 – 6 <i>n</i> cao	2		B1 for <i>6n</i> soi
(b) (i)	4, 10, 18, 28	2		B1 for 3 correct terms seen
(ii)	3 and 24	4		M1 for $\frac{n^2 + 3n}{5n - 12} = 6$ or better M1 for $n^2 - 27n + 72 = 0$ B1 for either 3 or 24
19 (a) (b)	$15^{2} - 1^{2} = 8 \times (1 + 2 + 3 + 4 + 5 + 6 + (2n + 1)^{2} - 1^{2}$ oe	Ć	Ś	
(c)	$(2n+1)^2 = 4n^2 + 4n + 1$ or $(2n+1)^2 - 1^2 = 4n^2 + 4n$, or $(2n)(2n)$	+ 2)	B	61
	Division of both sides by 8 and result of correctly	obtained	N	11
20 (a)	25, 21, 45	2	B1 fe	or 2 correct
(b)	n^2	1		
(c)	32	2	B1 fo	or $(T =)$ 1024 seen
(d)	$\frac{3}{2}n(n+1)$ oe	1		
(e)	360	1ft		
(f)	$\frac{1}{2}(n+1)(n+2)$ oe	2	or C	1 for $\frac{1}{2}(n-1)(n-2)$ oe
21(a)	128		1	
21(b)(i)	$2^{n+1} - 3$ final answer		1	
21(b)(ii)	$2^{n+1} + 5n + 1$ oe final answer		2	B1 for $2^{n+1} + 5n + k$ oe
			0	or M1 for 6 11 16 21 [26]

						<u> </u>		
22	(a)		7, 21			1		
	(b)		2 <i>n</i> – 1 oe			1		
	(c)		FT 3 × <i>their</i> (b) provided this is a function of <i>n</i> ; or $6n - 3$ oe			1 √		
	(d)	(i)	48			1		
	((ii)	$3n^2$			2 *	M1 for a sensible method, e.g. writing terms as 3×1 , 3×4 , 3×9 ,	
	-						or B1 for $An^2 + Bn + C$, $A \neq 0$ from a valid method.	
23	(a)	201	1			2	B1 for $(n =)$ 223 seen	
	(b)	36				1		
	(c)	(i)	9x - 9y, or $9y - 9x$, or any equiv.			1		
		(ii)	"123 is not a multiple of 9" oe			1	0.	
24	(a)			1 1	Co	ndone -8	37	
	(b)			1			X	
Megga								