1(a)	$2 \pi \times 10^{2}+2 \pi \times 8^{2}+\pi \times 10^{2}-\quad \pi \times 8^{2}$	M	M1 for $2 \pi \times 10^{2}$ seen or $2 \pi \times 8^{2}$ seen or $\pi \times 10^{2}-\pi \times 8^{2}$ seen
	Completion to 364π with at least one intermediate step isw AG	A	A0 if any errors or if π evaluated as $3.14[2 \ldots]$ or $\frac{22}{7}$ before getting to 364π
2	12 nfww		2 M1 for 8×9
3(a)(i)	84	2	M1 for correct area of a relevant triangle or trapezium
3(a)(ii)	50 nfww		M2 for $\sqrt{(12-4)^{2}+(15-9)^{2}}$ soi OR M1 for $\sqrt{8^{2}+k^{2}}$ oe or $\sqrt{k^{2}+6^{2}}$ oe M1 for $12+15+4+9+$ theirh where theirh is from use of Pythagoras
3(b)	8.49 to $8.5[0 \ldots]$		M2 for $r^{3}=\frac{2572 \times 3}{4 \times \pi}$ oe or $\mathbf{M 1}$ for $\frac{4}{3} \pi r^{3}=2572$
3(c)(i)	384		M2 for $(2 \times 6+2 \times 22.5+6 \times 22.5)[\times 2]$ oe or M1 for two different face areas seen
3c(ii)	$x^{2}=\frac{\text { their } 384}{6}$ OR $6 x^{2}=\text { their }(\mathbf{c})(\mathbf{i}) \rightarrow x^{2}=\text { their } 64$ OR $6 x^{2}=\text { their }(\mathbf{c})(\mathbf{i}) \rightarrow x=\sqrt{\frac{\text { their } 384}{6}}$	M2	M1 for $6 x^{2}=$ their $(\mathbf{c})(\mathbf{i})$ oe
	8 cao	B1	
4	8.15	2	B1 for answer figs 815 or for 0.85 seen or 900 seen
5	7π final answer	$\begin{array}{l\|l} 2 & \text { M1 for } \frac{360-80}{360} \times \pi \times 3^{2} \text { oe } \\ \text { If } 0 \text { scored, } \mathbf{S C 1} \text { for answer } 2 \pi \end{array}$	
6(a)	$\frac{3 \times 110}{\pi \times 3.5^{2}}$ oe	M2	M1 for $\frac{1}{3} \times \pi \times 3.5^{2} \times h=110$ oe
	$=8.573$ to $8.574 \ldots$	A1	
6(b)	9.26 or 9.256 to 9.262	2	M1 for $3.5{ }^{2}+8.57^{2}$

9(a)(i)	$\pi \times\left(\frac{9}{2}\right)^{2} \times 16=\frac{1}{2} \times \frac{4}{3} \times \pi \times r^{3}$		M2	M1 for $\pi \times\left(\frac{9}{2}\right)^{2} \times 16$ oe or $\frac{1}{2} \times \frac{4}{3} \times \pi \times r^{3}$ oe
	$\begin{aligned} & r^{3}=\frac{3}{2} \times\left(\frac{9}{2}\right)^{2} \times 16 \text { or } \\ & r=\sqrt[3]{\frac{3}{2} \times\left(\frac{9}{2}\right)^{2} \times 16} \end{aligned}$		M1	
	$r=7.862 \ldots$		A1	
9(a)(ii)	$\begin{aligned} & 1030 \text { or } 1040 \\ & \text { or } 1034.6 \text { to } 1035.1 \ldots \end{aligned}$		3	M1 for $\pi \times 9 \times 16$ oe M1 for $2 \times \pi \times 7.86^{2}$ oe or $3 \times \pi \times 7.86^{2}$ oe
10(a)	376.99 to 377.04		2	M1 for $\pi \times 10^{2} \times$ figs 12
10(b)	767 or 766.5 to $766.6 \ldots$			M2 for $\begin{aligned} & \pi \times 10^{2}+\pi \times 2 \times 10 \times(3+3+\text { figs } 12) \\ & \text { or } \mathbf{M 1} \text { for } \pi \times 10^{2} \text { or } \\ & \pi \times 2 \times 10 \times(3+3+\text { figs } 12) \end{aligned}$
10(c)	28.79 to $28.80 \ldots$			M2 for $200=\frac{x}{360} \times \pi \times 10.3^{2} \times 7.5$ or M1 for $\frac{x}{360} \times k \pi$ used
11(a)	9300 or 9299 to 9301			M2 for $\frac{1}{3} \pi \times 16^{2} \times 60-\frac{1}{3} \pi \times 12^{2} \times 45$ oe or M1 for $\frac{1}{3} \pi \times 16^{2} \times 60$ or $\frac{1}{3} \pi \times 12^{2} \times 45$
11(b)	$\left.\Phi^{2}=\right] 12^{2}+45^{2}$		M1	
	[$c=] 46.57 \ldots$		A1	
11(c)	1820 or 1816 to 1819.[0...]		4	B2 for $l=62.09$ to 62.13 or M1 for $\sqrt{60^{2}+16^{2}}$ oe and M1 for $\pi \times 16 \times$ their $62.1-\pi \times 12 \times 46.6\left[+\pi \times 12^{2}\right]$ If 0 scored, SC1 for $\pi \times 12^{2}$
12	1.6 oe		$\begin{array}{r\|r} 3 & \mathrm{M} 2 \\ & 0 \end{array}$	M2 for $5 \times 4 \times h=400 \times 0.08$ oe or M1 for 400×0.08 or for $\frac{0.08}{5 \times 4}$
13	12	3	B2 for y or M1 f If 0 scored $\sqrt{\frac{360}{k}}$	$=6$ or $2 \times y^{2}+4 \times y \times 2 y[=360]$ oe d, SC1 for $k y^{2}=360$ seen, leading to

14	24		M1 for $\frac{60}{360} \times \pi \times 3^{2}$ oe AND M2 for $\frac{300}{360} \times \pi \times\left(6^{2}-3^{2}\right)$ oe or $\pi \times 6^{2}-\pi \times 3^{2}-\frac{60}{360} \times \pi \times\left(6^{2}-3^{2}\right)$ oe or M1 for $\frac{300}{360} \times \pi \times 6^{2}$ oe or $\frac{300}{360} \times \pi \times 3^{2}$ oe or $\pi \times 6^{2}$ oe or $\pi \times 3^{2}$ oe
15(a)	13.8 or 13.78 to 13.79		$\mathbf{2}$M1 for $\frac{1}{2} \times 6 \times 6 \times \sin 130$ oe After 0, SC1 for answer 55.2 or 55.15 to 55.16
15(b)	$15.7 \text { or } 15.70 \text { to } 15.71$		M1 for $\frac{180-130}{360} \times \pi \times 6^{2}$ oe After 0, SC1 for answer 62.8 or 62.83 to 62.84
16(a)(i)	25.7 or 25.72 to 25.73	2	M1 for $\frac{134}{360} \times 2 \times \pi \times 11$ oe
16(a)(ii)	4.3 [0] or 4.298...	2	M1 for $\cos \left(\frac{134}{2}\right)=\frac{d}{11}$ or $\sin \left(\frac{180-134}{2}\right)=\frac{d}{11}$ oe
16(b)(i)	$\frac{1}{3} \pi r^{2} \times 9.5=115$ or $r^{2}=\frac{3 V}{\pi h}$ or better	M1	Correct substitution into volume equation or correct rearrangement
	$r=3.39[9 \ldots]$ or $3.40[00]$	A1	
16-(b)(ii)	108 or 107.7 to 107.8		$\begin{array}{l\|l} 3 & \text { M2 for } \pi \times 3.4 \times \sqrt{9.5^{2}+3.4^{2}} \\ \text { or M1 for } l^{2}=9.5^{2}+3.4^{2} \text { soi } \end{array}$

17(a)	7.54	2	M1 for $\pi \times 0.4^{2} \times 15$
17(b)	53.7	4	M1 for $\frac{1}{2} \times 4.5^{2} \times \sin 110$ oe M1 for $\frac{250}{360} \times \pi \times 4.5^{2}$ or $\frac{110}{360} \times \pi \times 4.5^{2}$ M1 for their $9.514+$ their 44.18 oe
18(a)	236	M1 or \mathbf{C}	$2 \times 5 \times 11+2 \times 5 \times 6+11 \times 6 \text { oe }$ for 302
18(b)	30		
19(a)	32.56 to 32.58 or 32.6	3 or A1 Aft SC	for $\frac{72}{360} \times \pi \times 20+20$ oe M1 for $\frac{72}{360} \times \pi \times 20$ for 12.56 to 12.58 or 12.6 ter 0 or 1 , 1 for their 'arc length' $+10+10$ soi
19(b)(i)	62.83 to 62.84 or 62.8	2	for $\frac{72}{360} \times \pi \times 10^{2}$
19(b)(ii)	4(.00) to 4.08 nfww		from their (b)(i) - (58.76 to 58.8$)$ provided answer not gative 2 for their (b)(i) $-2 \times \frac{1}{2} \times 10 \times 10 \times \sin \left(\frac{72}{2}\right)$ oe M1 for $[2 \times] \frac{1}{2} \times 10 \times 10 \times \sin \left(\frac{72}{2}\right)$ oe soi
20	600 WWW	3*	M2 for $\frac{\pi \times 20^{2} \times 16}{\frac{4}{3} \times \pi \times 2^{3}}$ or B1 for (Volume of water $=$) $\pi \times 20^{2} \times$ 16 or for (Volume of one drop $=$) $\frac{4}{3} \times \pi \times 2^{3}$ soi
21 (a) (b)	14 18 nfww	2^{*} 2^{*}	M1 for $25-1 \times 1-2 \times 2-\frac{1}{2} \times 4 \times 3$ oe disection. B1 for sloping side $=5$

29	(a) (i) 874	3	M2 for (2) $\pi r^{2}+2 \pi r \times 8$ or M1 for either (2) πr^{2} or $2 \pi r h$
	(ii) 3070	2ft	M1 for Figs [(their $874+150) \times 3$] or B1 for $\div 10^{4}$
	(b) (i) $77(.0)$	1	
	(ii) 500	3ft	M2 for $\pi R^{2}-4 \pi r^{2}+\mathbf{4 (b)} \mathbf{(i)}$ or M1 for $\pi R^{2}-4 \pi r^{2}$ or $4(\mathbf{b})(\mathbf{i})$
	(iii) 2410	3	M2 for $\pi R^{2} \times 8-4 \times \frac{2}{3} \times \pi \times r^{3}$ or M1 for $\pi R^{2} \times 8$ or $4 \times \frac{2}{3} \times \pi \times r^{3}$

