1(a)	$(2,7)$			1	
1(b)(i)	$\frac{3}{2} \text { oe }$			2	M1 for $\frac{13-1}{6--2}$ oe
1(b)(ii)	$-\frac{1}{\operatorname{their}(\mathbf{b})(\mathbf{i})} \mathrm{oe}$			1	Strict FT their (b)(i)
2(a)	$\left(\begin{array}{l\|l}(e-6)^{2}+(e-4)^{2} \text { oe or } & \text { M1 } \\ \sqrt{(e-6)^{2}+(e-4)^{2}} \text { oe } & \end{array}\right.$				
	$\begin{aligned} & e^{2}-10 e+16[=0] \text { or } \\ & 2 e^{2}-20 e+32[=0] \end{aligned}$		A2	A1 for	$\begin{aligned} & 2^{2}-6 e-6 e+36 \text { oe or } \\ & 2^{2}-4 e-4 e+16 \text { oe } \end{aligned}$
	$\begin{aligned} & (e-2)(e-8)[=0] \text { oe } \\ & \text { or } \frac{-(-10) \pm \sqrt{(-10)^{2}-4 \times 1 \times 16}}{2 \times 1} \text { oe } \end{aligned}$		M1	FT for fa for their	actorising or correct use of formula 3-term quadratic
	$(2,2)$ and (8, 8)		B1	\bigcirc	
2(b)(i)	2 nfww			B1 for [M2 for or M1 f $6=$ their	grad perpendicular $=]-\frac{2}{3}$ soi $\frac{5 f-6}{-f-4}=$ their $\left(-\frac{2}{3}\right) \mathrm{oe}$ $\frac{5 f-6}{-f-4}$ oe or $\left(-\frac{2}{3}\right) \times 4+c \text { oe }$
2(b)(ii)	13 with $(1,8)$ seen		3	M1 for M1 for $2 y=3 x$	$\left(\frac{4+(- \text { theirf })}{2}, \frac{6+(5 \times \text { theirf })}{2}\right)$ ubstituting their $(1,8)$ into k oe
3(a)	(a, a) with $a \neq 1,3$ or 5	2	SC1	for answe	r (1,1) or (5,5)
3(b)	$y=-\frac{1}{2} x-\frac{1}{2}$ oe nfww	5		for [gradi for [gradi for $(1,-1)$ for their heir $\left(-\frac{1}{2}\right)$	nt $A B=] \frac{3-(-5)}{3-(-1)}$ oe t $M=]-\frac{1}{\text { theirgradient } A B}$, -1) substituted into $x+c$ oe

4(a)	-8		M1 for $3 \times 7+2 h=5 \mathrm{oe}$
4(b)	$y=\frac{3}{2} x+19 \text { oe }$		B1 for gradient of original line $-\frac{2}{3}$ soi M1 for $-\frac{1}{\text { their gradient }}$ M1 for substituting (their $-8,7$) in $y=\operatorname{their}\left(\frac{3}{2}\right) x+c$
5(a)	$(7-(-1))^{2}+(0-6)^{2}$	M1	
	$B C=10$	B1	1
	correct completion to $A B=B C[=10]$		11
5(b)	40	2	M1 for $\frac{1}{2} \times$ their $(B C) \times(7-(-1))$ oe
6(a)	($1,2 \frac{1}{2}$)	1	1
6(b)	$-\frac{3}{8}$ oe	1	
6(c)	P, with supporting evidence, nfww e.g. $O P=5, O R=6$	2	B1 for $O R=6 \mathrm{nfww}$ or M1 for $\sqrt{(-3)^{2}+4^{2}}$, or better

7(a)	$\left(-1, \frac{1}{2}\right) \text { or }(-1,0.5) \text { cao }$	1	
7(b)	$\frac{1}{2} \text { oe }$	1	
7(c)	[Gradient of $B C=$] $\frac{-8}{4}$ $\frac{1}{2} \times \frac{-8}{4}=-1$ hence perpendicular	M1	Alternative 1: M1 for $\frac{1}{2} \times m_{B C}=-1$ or $m_{B C}=-\frac{1}{0.5}$ oe leading to $m_{B C}=-2$ A1 for gradient of $B C=\frac{-8}{4}=-2$ hence perpendicular Alternative 2: M1 for $\overrightarrow{A B}=\binom{6}{3}$ oe and $\overrightarrow{A C}=\binom{10}{-5}$ oe A1 for $\left(4^{2}+8^{2}\right)+\left(6^{2}+3^{2}\right)=\left(10^{2}+5^{2}\right)$ hence perpendicular

$\mathbf{1 2}$ (i)	$\frac{1}{2}$ or 0.5 cao	1	
(ii)	$y=1$ final answer	1	
(iii)	Line from $(6,1)$ to $(4,3)$	1	
(iv)	$y=-x+7$ final answer	2	B1 for any equation with grad -1 and/or intercept 7
(v)	$(0,6)$	B1 for line from $(2,2)$ with y-intercept between 5 and 7 soi Or for correct (unsimplified) equation $(y=-2 x+6)$	

19	(a) -2.5 .5	1	
(b) $y=-0.75 x+4$	2	C1 for $y=-0.75 x+c$ or $y=m x+4$ or B1 for $m=-0.75$ or $c=4$ soi or a line through either point $(-8,10)$ or $(4,1)$	

