For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Cambridge Assessment International Education

Cambridge Ordinary Level

CANDIDATE

 NAMECENTRE NUMBER \square CANDIDATE NUMBER

PHYSICS

Paper 2 Theory Practice

Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.
Write your answers in the spaces provided on the Question Paper.

Section B

Answer any two questions.
Write your answers in the spaces provided on the Question Paper.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

2

Section A

Answer all the questions in this section. Answer in the spaces provided.

Fig. 1.1 shows a satellite travelling at a constant speed in a circular orbit around the Earth.

Fig. 1.1 (not to scale)
(a) State how speed differs from velocity.
\qquad
\qquad
(b) As it orbits the Earth, the satellite is experiencing an acceleration.
(i) Explain, in terms of its velocity, why the satellite is accelerating.
\qquad
\qquad
\qquad
(ii) On Fig. 1.1, draw an arrow, starting on the satellite, to show the direction of the satellite's acceleration.
(c) As the satellite orbits the Earth, it experiences a force due to gravitational attraction.

State and explain whether this force does work on the satellite and state whether the energy of the satellite is affected.
\qquad
\qquad
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
 3

2 Fig. 2.1 shows a weight of 4.0 N attached to a spring-

Fig. 2.1
The unstretched length of the spring is 8.0 cm . With the 4.0 N weight attached to the spring, the length is 14.0 cm . The epring is within its limit of proportionality.
(a) State what is meant by the limit of proportionality of a spring.
\qquad
\qquad
\qquad
(b) The 4.0 N weight is replaced with a 2.0 N weight. Calculate the new length of the spring.
new length =
(c) Describe how the apparatus in Fig. 2.1 is used to obtain readings to plot an extension-load graph.
\qquad
\qquad
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

4

Fig. 3.1 showe a metal coffee cup on a metal warming plate.

Fig. 3.1

Fig. 3.2

There is a small electrical heater inside the warming plate that keeps the plate hotter than the coffee.
(a) Deacribe how heat is transferred through the metal and then to all of the liquid in the cup.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A cup of a different shape is placed on the same heater, as shown in Fig. 3.2. The two cups are made of the same metal and contain the same amount of coffee.

Explain why the coffee in the cup in Fig. 3.2 is not kept as warm as the coffee in the cup in Fig. 3.1.
\qquad
(c) The outaide surface of the cup can be either black or white and can be either dull or shiny.
(i) Underline which colour and which type of surface is best to keep the coffee warm.
black
white
dull
shiny
(ii) Explain your answer to (c)(i).
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com 5

4 Fig. 4.1 shows a screwdriver of mass 64 g resting in equilibrium on a pivot.

Fig. 4.1
(a) On Fig. 4.1, mark and label with a C , the centre of mass of the screwdriver.
(b) The gravitational field strength is $10 \mathrm{~N} / \mathrm{kg}$.
(i) Calculate the weight of the screwdriver.

> weight =
(ii) On Fig. 4.1, draw an arrow labelled W to represent the weight of the screwdriver.
(c) State two conditions that apply when an object is in equilibrium.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

6

5 Optical fibres are used to transmit telephone signals. Fig. 5.1 shows a ray of light that strikes the inside surface of an optical fibre at P.

Fig. 5.1
(a) State one advantage of using optical fibres to transmit talephone signals.
\qquad
\qquad
(b) (I) On Fig. 5.1, draw a normal at P and mark the angle of incidence with the letter i.
(III) State and explain what happens to the ray at P . Use the term critical angle in your answer.
\qquad
\qquad
\qquad
(c) The optical fibre is made of glass of refractive index 1.5 .

At the start of the optical fibre, the ray enters the glass from air-
The angle of incidence in the air is 60°.
Cakculate the angle of refraction in the glass.
angle =

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
 7

6 Fig. 6.1 is a graph of current against potential difference (p.d.) for a length of metal wire.

Fig. 6.1
(a) The metal wire obeys Ohm's law. State Ohm's law in words.
\qquad
\qquad
\qquad
(b) Calculate the resistance of the metal wire-
resistance =
(c) A new wire is made from the same metal as the original wire. The two wires have the same length. The cross-sectional area of the new wire is half that of the original wire.
(II) Calculate the resistance of the new wire.
resistance =
(II) On Fig. 6.1, draw a line to show how current varies with p.d. for the new wire-

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
 8

7 Fig. 7.1 shows a compass needle near a bar magnet. Magnetic poles are shown on the compass needle and on the magnet.

A finger stops the compass needle from turning.

Fig. 7.1 (not to scale)
(a) (I) The magnet causes a force on the S-pole of the compass needle.

On Fig. 7.1, draw an arrow from the S -pole of the compass needle to show the direction of this force.
(II) Explain why the compass needle turns when the finger is removed.
\qquad
\qquad
(b) A small compass is used to plot the magnetic field lines of the magnet.

Describe how the compass is used to plot magnetic field lines on a piece of paper.
\qquad
\qquad
\qquad
\qquad
\qquad

8 The nuclide notation for the radioactive isotope boron-12 is ${ }_{5}^{12} \mathrm{~B}$.
(a) In the space below, draw a labelled diagram to illustrate the stucture of a neutral atom of this isotope. Show all the particles in the atom.
(b) As boron-12 decays, it emits a beta-particle. A new atom is produced.

Determine
(I) the proton number (atomic number) of the new atom,
proton rumber =
(II) the nucleon number (mass number) of the new atom.
nucleon rumber $=$

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Answer two questions from this section. Answer in the spaces provided.
9 Different energy sources are used to generate electricity.
(a) Energy sources are renewable or non-renewable.
(i) Nuclear energy is described as a non-renewable source.

Explain what is meant by a non-renewable energy source.
\qquad
\qquad
(ii) Four of the energy sources used are:
hydroelectric oil geothermal wind

Write the name of these energy sources in the correct column of the table below.

non-renewable	renewable and caused by energy from the Sun	renewable and not caused by energy from the Sun

(iii) State one way in which using nuclear energy is better for the environment than using oil.
\qquad
\qquad
(iv) State one way in which using nuclear energy is worse for the ervironment than using oil.
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
(b) Fig. 9.1 is a block diagram of a power station that produces electrical energy from oil

Fig. 9.1
(ii) Write the name of the missing part of the power atation in the empty box on Fig. 9.1. [1]
(ii) State the form of energy that the turbine possesses.
(iii) A small boiler in the power station contains $24 \mathrm{~m}^{3}$ of water at $30^{\circ} \mathrm{C}$. High pressure in the boiler increases the boiling point of water to $120^{\circ} \mathrm{C}$.

Thermal energy supplied to the boiler is used to heat the water from $30^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ and then to turn it all to ateam at $120^{\circ} \mathrm{C}$.

The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
The specific heat capacity of water is $4200.1 /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$.
The specific latent heat of vaporisation of water is $2.3 \times 10^{6} \mathrm{~J} / \mathrm{sg}$ -

1. Calculate the mase of water in the boiler.
```
mass=
```

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
2. Calculate the total thermal energy (heat) supplied to the boiler.
thermal energy =
[4]
(iv) The electrical energy output from the power station is transmitted over long distances at a high voltage.

Explain why electricity ia transmitted at a high voltage.
\qquad
\qquad
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

10 (a) Fig. 10.1 shows the path of a ray of blue light as it passes through a glass prism.

FIg. 10.1
(I) State the wave term used to describe what happens to the ray of light at A.
\qquad
(II) Using angles from Fig. 10.1, calculate the refractive index of the glass.
refractive index $=$
(III) Explain why the ray does not emerge from the prism at B.
\qquad
\qquad
(IV) Fig. 10.2 shows a second, horizontal, ray of blue light striking the prism at point C .

On Fig. 10.2, continue the path of the second ray through and out of the glass prism. [2]

Flg. 10.2

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

14
(b) The camera lens shown in Fig. 10.3 is used to photograph the object O .

Fig. 10.3 (full scale)

The object O is 2.0 cm high and is placed 8.0 cm from the centre of the lens. The lens has a focal length of 3.0 cm .
(I) Draw rays on Fig. 10.3 to find the position and height of the image formed by the lens. Label the image I.
(II) Determine the height of the image.
\qquad
(III) The image formed by the lens is a real image.

1. Explain the difference between a real image and a virtual image.
2. Explain how a converging lens is used to produce and view a virtual image.
\qquad
\qquad
\qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

11 The metals in the list below have many different uses.
aluminium copper iron silver steal
(a) State which metal from the list is used for
(I) a compass needle,
\qquad
(ii) magnetic screening.
\qquad
(iii) the core of a transformer.
\qquad
(b) (i) Describe one use for a tranaformer.
\qquad
\qquad
\qquad
(ii) An a.c. generator supplies an input voltage of 220 V to a transformer.

1. In the space below, aketch a graph of the output voltage against time for the a.c. generator-
2. The transformer has 1700 turns on the primary coil and 85 turns on the secondary coil.

Calculate the output voltage of the transformer.
output voltage $=$

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
(c) Fig. 11.1 shows a magnet next to one end of a solenoid.

Fig. 11.1
The terminals of the solenoid are connected to a very sensitive ammeter.
(i) The magnet is moved to the right at a constant speed and a reading is observed on the ammeter.

1. Explain why there is a current in the ammeter.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Explain how the current in the ammeter opposes the change producing it:
\qquad
\qquad
\qquad
(ii) The magnet stops when the S-pole reaches the middle of the solenoid.

The reading on the ammeter is observed when the magnet is moved to the left at a constant speed that is less than its speed in (c)(i).

State two ways in which the reading on the ammeter differs from the reading observed in (c)(i) as the magnet moves to the left.

1. \qquad
2. \qquad

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

2 (a) where extension/stretching stops being proportional to force/load/weight/mass or extension/load = constant
or point where length or extension against load graph curves C 1 [1]
(b) $4=\mathrm{k} 6$ or $4 / 6$ or $6 / 4$ or $6 \times 2 / 4$ or $3(\mathrm{~cm})$ seen C1

11 cm A1 [2]
(c) different weights/masses/load and measure new length B1
how extension is found e.g. reading on scale for loaded spring subtracted from reading with no load/mass/original B1 [2]

4 (a) (point) C immediately above tip of pivot (and in middle(vertically) of screwdriver ($\pm 1 \mathrm{~mm}$)) B1
(b) (i) $0.64 \mathrm{~N} \mathrm{B1}$
(ii) arrow W vertically downwards through candidate's C or pivot B 1
(c) no resultant force or upward force = downward force or force left = force right B1 no resultant moment (of force) or clockwise moment = anticlockwise moment B1 [5]
5 (a) more telephone signals (at one time)
OR great(er) bandwidth; more data (per sec); more signals
OR faster data/information transfer
OR less attenuation; less energy/power/signal loss;
OR long(er) distance (before regeneration)
OR (more) secure
OR less noise/interference OR high(er) quality/clear(er) B1
(b) (i) correct normal and angle marked B1
(ii) total internal reflection B 1
angle of incidence is larger than critical angle B1
(c) $(\mathrm{n}=) \sin \mathrm{i} / \sin r$ in any form numerical or algebraic C 1

35(.2644) ${ }^{\circ}$ unit ${ }^{\circ}$ needed A1 [6]

6 (a) current is directly proportional to voltage (accept voltage/current = constant, but not just = R) B1
if temperature/physical conditions constant B1
(b) $(\mathrm{R}=) \mathrm{V} / \mathrm{I}$ in any form algebraic or using any value of V and I from graph C 1
$20 \Omega \mathrm{~A} 1$
(c) (i) 40Ω or $2 \times(\mathrm{b}) \mathrm{B} 1$
(ii) straight line graph through origin below given line ecf (b) (e.g. accept above line if $R<20$) M1
goes through 0.1 A at 4 V ecf (b) (e.g. allow through 0.2 A at 2 V if $\mathrm{R}=10 \Omega$) A 1 [7]
7 (a) (i) horizontal arrow to right (by eye) [B1]
(ii) forces / resultant causes moment or (turns because) force is not at pivot [B1]
(b) mark made at one end/pole/direction of compass (on paper) [B1]
move compass so that other end of compass is on mark and remark [B1]
join marks made as compass moved on in some way (to draw line) [B1]
[5]
8 (a) neutrons and protons together and alone in the middle B1
5 protons B1
7 neutrons (if protons and neutrons unlabelled 1/2) B1
5 electrons and electrons surrounding nucleus B1
(b) (i) 6 B 1
(ii) 12 B1 [6]

BLANK PAGE

Ounutan	Anower	Mark:
14a)	W/speed does nor hree a diection/s a sicalur quatiy	时
1601		81
	Es volvaly changes with time (hiss is an acouleraton)	81
1b/b)	arve trom suthe foeads (ontre of) Eart	日1
반)		181
		B1

2 (a) where extension/stretching stops being proportional to force/load/weight/mass gr extensioniload = constant
gc point where length or extension against load graph curves C1 [1]
(b) $4=k 6$ or $4 / 6$ or $6 / 4$ or $6 \times 2 / 4$ or 3 (cm) seen C1

11 cm A1 [2]
(c) different weights/masses/load and messure newlength B1
bow extension is found e.g. reading on scale for loaded spring subtracted from
[sading with no load/mass/original B1 [2]

Sutition	Answer	Marks
Ha)	condutabn in metal er corutcion (in ligud) mentored bir name	B
	 	E1
	cofrection explured by ming of het loqud or comed dervy fhanget	81
$3 \mathrm{~m})$		B4
Mc)	Hhate and shiry	B1
	leas radabon embed /hers embesin	81

4 (a) (point) C immediately above tip of pivot (and in midgle(vertically) of screwdriver ($\$ 1 \mathrm{~mm})$) 81
(b) $000.64 \mathrm{~N} \mathrm{B1}$
(ii) anow W vertically downwards through candidate's C or pivat B1
(c) 0 p resultant force or upward force $=$ downward force or force left $=$ force right B 1
pe resultant moment (of force) or clockwise moment = anticlockwise moment B1 [5]
5 (a) more telephone signals (at one time)
OR great(ed) bandwidth; more data (persec); more signals
OR faster data/information transfer
OR less attenuation; less ehergy/powerisignal loss;
OR long(er) distance (before regeneration)
OR (more) secure
OR less noise/interference OR high(er) quality/clear(ed) B1
(b) (0) correct nomal and angle marked B1
(ii) total internal reflection B 1
sogle of incidence is larger than critical angle B1
(c) ($n=$) sin j sin r in any form numerical or algebraic C 1
$35(2644)$ ' unit " needed A1 [6]

For Live Classes，Recorded Lectures，Notes \＆Past Papers visit： www．megalecture．com

BLANK PAGE

6 （a）current is directly proportional to voltage（accept voltage／current＝constant，but not just $=$ R）B1
if temperature／physical conditions constant E1
（b）（ $\mathrm{R}=$ ） V / I in any form algebraic or using any value of V and I from graph C 1
20Ω A1
（c） 040 a or $2 \times$
（b）B1
（ii）straight line graph through origin below given line gof（b）（e．g．accept above line if $\mathrm{R}<20$ ） M 1
goes through 0．1A at 4 V ecf（b）（e．g．allow through 0.2 A at 2 V if $\mathrm{R}=10 \mathrm{\Omega}$ ） A 1 ［7］
7 （a）（0）horizontalarrow to r isht（by eye）［B1］
（ii）foress／resultant causes moment or（turns because）force is not at pivot［E1］
（b）pers made at one end／pole／direction of compass（on paper）［B1］ woue compass so that other end of compass is on mark andremerk［B1］ joje marks made as compass moved on in some way（to draw line）［B1］ ［5］

8 （a）neutrons and protons together and alone in the middle B1
5 protons B1
7 neutrons（if protons and neutrons uolabeled 1／2）B1
5 electrons and electrons surrounding nucleus B1
（b） 0681
（ii） 12 日 1 ［6］

Ounstion	Annwis	Wabs
（9）${ }^{\text {a }}$	net berg mpluad ow will run ot	81
	oriy ${ }^{\text {a }}$ in tid colim	61
	only wid and hyd owethe in and octum	81
	gotherta in 3il coumm	81
9翟	 	81
Sayb		41
野喽	gineras［asd tranlomer）	41
50909	kimbe（nomb）	41
906］	1.24000 k	41
		C1
		Cl
	$24000 \times 4200-90 \times 9072) \times 10^{2} 47$	C1
	$6.4 \times 10^{-1} \mathrm{j}$	A1
4t／in	baw ounert	81
	of timur wion anblut usd	日 8

For Live Classes, Recorded Lectures, Notes \& Past Papers visit:
www.megalecture.com

BLANK PAGE

10 (a) (i) refraction B1
(ii) $(\mathrm{n}=) \sin i / \sin \mathrm{r} \mathrm{C} 1$
sid $45^{\circ} / \sin 29^{\circ} \mathrm{C} 1$
1.4585 to more than 1 sig. fig. A1
(iii) the angle of incidence/incident angle is greaterthan the critical angle B1
total internal reflection occurs B1
(iv) sercect refraction at C with ray parallel to AB B1
sprrect reflection (and correct refraction on otherface i.e. downwards) B1
(b) (1) Any TWO of:
yndexiated ray through sentre of lens
5ax parallel to axis through point 3 cm from lens on right afterlens
rax through point 3 cm to left of lens parallel to axis after lens M2
rays converge and vertical image drawn and labelled / A1
(ii) $1.2 \pm 0.2 \mathrm{~cm} \mathrm{B1}$
(iii) 1. rasl image (can be) formed on screen; virtual image not found on screen;
rays converge on real image; rays do not converge on virtual image;
rays only appeariseem to come from a point on virtual image B1
2. Rlace object within focal length; between lens and focal point/principal
fgcus B1
view from other side of lens; look through lens; image same side as/behind qbiest B1 [15]

Ouestion	Answer	Mark
11(3)6)	stoel	8181
	ron	
11(a)(a)	ron 61 (i) and (iil boh corect 81 酸 comect	
11(b)0	dear use (eg change voltage/cument)	M1
	detal of operaton po tamemit eincricty or in a charger etc.)	A1
$11 / 8)$	1 votage on verticis axis and time on horcortal aes	B1
	dear itempl it sinusodal curce for theast one cyde	B1
	$2\left(V_{3}=V_{5} N_{3} / \mathrm{N}\right.$ or $229 \times 85 / 1770$	C1
	11V	A1
11(c) 0	1 magets feld/ fiux / fux lirloge mentiond	B1
	magnte feld (ines) eut sclencid or XV, or changing (magnebe) fwidifuxifux linkage (n sclenoid)	B1
	inducedemitivituge	B1
	2 U/arnent magnetses solenod/produces magnetc Seld/5ux(inkage) in solenoid/prodices a S-pole(in solenoid)	B1
	magnet repelod or experiences a force to fe leth	81
$13(\mathrm{c}(0)$	smuler reading/dotection	B1
	rexding in opposite drection	B1

