Q1

Angular speed of second's hand of a watch in rads-1 is

- A) n
- B) $\frac{\pi}{2}$

- C) $\frac{\pi}{30}$
- D) $\frac{\pi}{180}$

Q2

The shaft of a motor rotates at a constant angular speed of 360rev/min. Angle turned through in 1 sec in radian is

- A) π
- B) 3π

- $G) 6\pi$
- D) 12π

Q3

The direction of angular velocity is along

- A) Tangent to the circle
- B) Inward the radius

- C) Axis of rotation
- D) Outward of the radius

A disc of radius R=20 cm is rotating about its axis with an angular velocity $\omega = 20$ rad s^{-1} on a horizontal smooth surface. The linear speed of point. C on the disc is

- A) 1ms-1
- $B) 2ms^{-1}$

- C) $4 m s^{-1}$
- D) $4\pi ms^{-1}$

Q5

A satellite moving round the earth constitutes

- A) An inertial frame of reference
- C) Non inertial frame
- B) Neither inertial nor non inertial
- D) Both inertial and non-inertial

Q6

A particle moves in a circle of radius 25 cm at two revolutions per second. The acceleration of the particle in m/s² is

A)
$$\pi^2$$

C)
$$4\pi^{2}$$

B)
$$8\pi^{2}$$

$$D) 2\pi$$

If the position vector of a particle is $\vec{r} = (3\hat{i} + 4\hat{j})$ meter and its angular velocity is $\vec{\omega} = (\hat{j} + 2\hat{k})$ rad/sec then its linear velocity is (in m/s).

A)
$$-(8\vec{i}-6\vec{j}+3\vec{k})$$

C)
$$\left(3\vec{i}-6\vec{j}+8\vec{k}\right)$$

B)
$$-(3\vec{i} - 6\vec{j} + 6\vec{k})$$

D)
$$\left(6\vec{i}-8\vec{j}+3\vec{k}\right)$$

Q8

The mud flies off the tyre of a fast moving car in the direction

A) parallel to the moving tyre

C) anti parallel to the moving tyre

B) tangent to the moving tyre

D) none of these

Q9

A satellite appears to be at rest when seen from the equator. Its height from the earth surface is nearly C) such a satellite cannot exist

A) 35600 km

D) 6400 km B) 356000 km

Q10

A wheel rotates about an axis passing through the centre and perpendicular to the plane with slowly increasing angular speed. Thus it has:

- A) radial velocity and radial acceleration
- B) tangential velocity and radial acceleration
- C) tangential velocity and tangential acceleration
- D) tangential velocity but acceleration having both components