Pre Release Solution May June 2WWWWemegalecture.com
 Course Code 2210/22

Your preparation for the examination should include attempting the following practical tasks by writing and testing a program or programs.

An electric mountain railway makes four return trips every day. In each trip the train goes up the mountain and back down. The train leaves from the foot of the mountain at 09:00, 11:00, 13:00 and 15:00. The train returns from the top of the mountain at 10:00, 12:00, 14:00 and 16:00. Each train has six coaches with eighty seats available in each coach. Passengers can only purchase a return ticket; all tickets must be purchased on the day of travel. The cost is $\$ 25$ for the journey up and $\$ 25$ for the journey down. Groups of between ten and eighty passengers inclusive get a free ticket for every tenth passenger, provided they all travel together (every tenth passenger travels free). Passengers must book their return train journey, as well as the departure train journey, when they purchase their ticket. Passengers can return on the next train down the mountain or a later train. The last train from the top of the mountain has two extra coaches on it.

The train times are displayed on a large screen, together with the number of tickets still available for each train. Every time a ticket is booked the display is updated. When a train is full, the word 'Closed' is displayed instead of the number of tickets available.

Write and test a program or programs for the electric mountain railway.

- Your program or programs must include appropriate prompts for the entry of data; data must be validated on entry.
- Error messages and other output need to be set out clearly and understandably.
- All variables, constants and other identifiers must have meaningful names.

You will need to complete these three tasks. Each task must be fully tested.
Task 1 - Start of the day.
Write a program to set up the screen display for the start of the day. Initialise suitable data structure(s) to total passengers for each train journey and total the money taken for each train journey. Each train journey must be totalled separately. There are four journeys up and four journeys down every day.

Task 2 - Purchasing tickets.
Tickets can be purchased for a single passenger or a group. When making a purchase, check that the number of tickets for the required train journeys up and down the mountain is available. If the tickets are available, calculate the total price including any group discount. Update the screen display and the data for the totals.

Task 3 - End of the day.
Display the number of passengers that travelled on each train journey and the total money taken for each train journey. Calculate and display the total number of passengers and the total amount of money taken for the day. Find and display the train journey with the most passengers that day.

Pre Release Solution May June 2W2wWsmegalecture.com Course Code 2210/22

Task 1 - Start of the day.
Write a program to set up the screen display for the start of the day. Initialise suitable data structure(s) to total passengers for each train journey and total the money taken for each train journey. Each train journey must be totalled separately. There are four journeys up and four journeys down every day.
//Initialization of suitable data structures (arrays)
INTEGER Time $[1: 8] \leftarrow\{9,11,13,15,10,12,14,16\}$ //Time array indices 1 to 4 are for Bottom to top train //Time array indices 5 to 8 are for Top to bottom train
INTEGER Tickets[1:8] $\leftarrow\{480,480,480,480,480,480,480,640\}$

//Tickets array indices 1 to 4 are for Bottom to top train
INTickets array indices 5 to 8 are for Top to bottom train
//Variable declaration and intialization
INTEGER Count $\leftarrow 0, \quad$ Passengers $\leftarrow 0$
REAL AmountPerTrain $\leftarrow 0.0$ // AmountPerTrain: To store amount for each single train
//CONSTANT declaration
INTEGER CONST GroupMin $\leftarrow 10$
INTEGER CONST GroupMax $\leftarrow 80$
INTEGER CONST TotalTrains $\leftarrow 8$
//Minimum members in a group (used in Task 2) //Maximum members in a group (used in Task 2) $/ / \mathrm{Up}+$ Down trains (used in Task 3)

REAL CONST RoundTripTicketCost $\leftarrow 50.0 \quad / /$ Round trip ticket cost $25.0+25.0=50.0$ (used in Task 2)
REAL CONST OneWayTicketCost $\leftarrow 25.0$
//One-way ticket cost 25.0 (used in Task 3)
//Screen display for the start of the day

FOR Count $\leftarrow 1$ TO 4
$\stackrel{\downarrow}{\downarrow}$
OUTPUT "Departure time is ", Time[Count], ":00 and", Tickets[Count], " ticket(s) still available in this train"
OUTPUT "Return time is ", Time[Count + 4], ":00 and", Tickets[Count + 4], " ticket(s) still available in this train"
NEXT Count
$/ /[$ Count +4$]$ to retrieve the return (top to bottom) trains data

TASK 1 OUTPUT:

```
Departure time is 9:00 and 480 ticket(s) still auailable in this train
Return time is 10:00 and 480 ticket(s) still available in this train
Departure time is 11:00 and 480 ticket(s) still available in this train
Return time is 12:00 and 480 ticket(s) still available in this train
Departure time is 13:00 and 480 ticket(s) still available in this train
Return time is 14:00 and 480 ticket(s) still available in this train
Departure time is 15:00 and 480 ticket(s) still available in this train
Return time is 16:00 and 640 ticket(s) still available in this train
```

//Note:
//Double slash is used to write single-line comments.
//A comment is an explanation or description of the source code of the program. It helps a developer to explain the //logic of the code and improves program readability. At run-time, a comment is ignored by the compiler.

Pre Release Solution May June 2Www.meqgalecture.com Course Code 2210/22

Task 2 - Purchasing tickets.
Tickets can be purchased for a single passenger or a group. When making a purchase, check that the number of tickets for the required train journeys up and down the mountain is available. If the tickets are available, calculate the total price including any group discount. Update the screen display and the data for the totals.
//Task 2 Variable declaration and intialization
CHAR Choice $\leftarrow{ }^{\prime} \mathrm{N}$ '

INTEGER CountOfTens $\leftarrow 0$, TicketsPurchased $\leftarrow 0$,
REAL
Price $\leftarrow 0.0$
BOOLEAN Flag \leftarrow FALSE
STRING Password \leftarrow " "

REPEAT

//Hour(Now): Returns current system hour (integer 0 through 23).

FOR Count $\leftarrow 1$ TO 4

4 IF (Tickets[Count] >0 AND Time[Count] > Hour(Now))THEN
OUTPUT "Departure time is ", Time[Count], ":00 and", Tickets[Count], " ticket(s) still available in this train"

ELSE

OUTPUT "Train at departure time ", Time[Count], ":00 is CLOSED"
ENDIF
$/ /($ Hour(Now) + 1): For example, if you didn't //depart at 9:00 you couldn't return at 10:00

NEXT Count

Pre Release Solution May June 2W2w wosegalecture.com Course Code 2210/22

Pre Release Solution May June 2WWWWemegalecture.com Course Code 2210/22

IF Choice $=$ ' Y ' THEN

\{
OUTPUT "Please Purchase Ticket(s)"
OUTPUT "You can purchase ticket(s) only on the day of journey and it must be return ticket"

Flag \leftarrow FALSE

REPEAT

IF Flag = TRUE THEN OUTPUT "Wrong number of tickets. Please try again." ENDIF
OUTPUT "Tickets can be purchased for a single passenger or for a group of 10 to 80 passengers only"

OUTPUT "How many tickets would you like to buy?"
INPUT TicketsPurchased
80

Flag \leftarrow TRUE
//Because tickets can be purchased for a single passenger or a group
UNTIL ((TicketsPurchased =1) OR (TicketsPurchased > = GroupMin AND TicketsPurchased <= GroupMax))

CountOfTens \leftarrow DIV(TicketsPurchased, 10)
// Calculation of free ticket for every tenth passenger.
// DIV(): Integer division used to find the quotient after division. Example DIV $(23,10)$ is 2.
Flag \leftarrow FALSE
OUTPUT "Select your Departure Train"

REPEAT

IF Flag = TRUE THEN OUTPUT "Wrong train selected. Please try again." ENDIF
4 FOR Count $\leftarrow 1$ TO $4 \quad / / H o u r(N o w):$ Returns current system hour (integer 0 through 23)
\& IF (Tickets[Count] >= TicketsPurchased AND Time[Count] > Hour(Now)) THEN
OUTPUT "Please enter ", Count, " for train at", Time[Count], ":00. This train has ", Tickets[Count], "tickets remaining"
VENDIF
NEXT Count
INPUT DepartTrain
//Range Check
Flag \leftarrow TRUE
UNTIL ((DepartTrain >= 1 AND DepartTrain < = 4) AND
(Tickets[DepartTrain] > = TicketsPurchased) AND (Time[DepartTrain] > Hour(Now))

Pre Release Solution May June 2Www.mergalecture.com Course Code 2210/22

Tickets[DepartTrain] \leftarrow Tickets[DepartTrain] - TicketsPurchased FreeTickets[DepartTrain] \leftarrow FreeTickets[DepartTrain] + CountOfTens
//Calculate and update remaining tickets //Save free tickets for each train

Flag \leftarrow FALSE
OUTPUT "Select your Return Train"

REPEAT

INPUT ReturnTrain
Flag \leftarrow TRUE //Range Check
UNTIL (ReturnTrain $>=5$ AND ReturnTrain $<=8$) AND
(Tickets[ReturnTrain] $>=$ TicketsPurchased $)$ AND Time[ReturnTrain] > (Hour(Now) +1))

Price \leftarrow (TicketsPurchased - CountOfTens) * RoundTripTicketCost
//CONSTANT RoundTripTicketCost $\leftarrow 50.0$

IF CountOfTens > 0 THEN

OUTPUT "Total Price is \$", TicketsPurchased * RoundTripTicketCost
OUTPUT "Discount is $\$$ ", CountOfTens * RoundTripTicketCost
OUTPUT "Pay the discounted price of \$", Price, "only and collect your tickets"

ELSE

\downarrow
OUTPUT "Please pay $\$ "$, Price, "and collect your ticket"
ENDIF

Pre Release Solution May June 2W2w wemegalecture.com Course Code 2210/22

Password $\leftarrow 6 \mathbf{6 \%}$ //Empty string to initialize Password

OUTPUT "Press E to end the day (only admin) or press any other key to continue"
INPUT Choice
IF Choice $=$ ' E ' THEN

REPEAT

OUTPUT "To end the day enter admin password or press N otherwise"
INPUT Password
// "abc123" is admin password.

UNTIL (Password = "abc123" OR Password= "N")

ENDIF

UNTIL (Password = "abc123")

Pre Release Solution May June 2W2w wemegalecture.com
 Course Code 2210/22

TASK 2 OUTPUT: (Test data: Group of 50, Departure at 9:00 and arrival at 10:00)
Departure time is 9:00 and 480 ticket(s) still available in this train
Return time is 10:00 and 480 ticket(s) still available in this train
Departure time is 11:00 and 480 ticket(s) still available in this train
Return time is 12:00 and 480 ticket(s) still available in this train
Departure time is 13:00 and 480 ticket(s) still available in this train
Return time is 14:00 and 480 ticket(s) still auailable in this train
Departure time is 15:00 and 480 ticket(s) still auailable in this train
Return time is 16:00 and 640 ticket(s) still available in this train
Dear traveller, do you want to book your journey? (Y/N)Y
Please Purchase Ticket(s)
You can purchase ticket(s) only on the day of journey and it must be return tick et
Tickets can be purchased for a single passenger or for a group of 10 to 80 passe ngers only
How many tickets would you like to buy?50

Select your Departure Train
Please enter 1 for train at 9:00. This train has 480 tickets remaining
Please enter 2 for train at 11:00. This train has 480 tickets remaining
Please enter 3 for train at 13:00. This train has 480 tickets remaining
Please enter 4 for train at 15:00. This train has 480 tickets remaining

Select your Return Train

Please enter 5 for train at 10:00. This train has 480 tickets remaining
Please enter 6 for train at 12:00. This train has 480 tickets remaining
Please enter 7 for train at $14: 00$. This train has 480 tickets remaining
Please enter 8 for train at 16:00. This train has 640 tickets remaining

Total Price is \$ 2500.0
Discount is \$250.0
Pay the discounted price of $\$ 2250.0$ only and collect your tickets_

Press E to end the day (only admin) or press any other key to continue E

To end the day enter admin password or press N otherwise

Pre Release Solution May June 2Www.mergalecture.com Course Code 2210/22

Task 3 - End of the day.
Display the number of passengers that travelled on each train journey and the total money taken for each train journey. Calculate and display the total number of passengers and the total amount of money taken for the day. Find and display the train journey with the most passengers that day.
//Task 3 Variable declaration and intialization
INTEGER \quad Highest $\leftarrow 0, \quad$ TrainID $\leftarrow 0, \quad$ TotalPassengers $\leftarrow 0, \quad$ MultiHigh $\leftarrow 0$
REAL \quad TotalMoney $\leftarrow 0.0$
FOR Count $\leftarrow 1$ TO TotalTrains

IF Count < 8 THEN

Passengers \leftarrow (480 - Tickets[Count] $)$

ELSE

Passengers $\leftarrow(640-$ Tickets[Count] $)$

ENDIF

AmountPerTrain $\leftarrow(($ Passengers - FreeTickets[Count] $) *$ OneWayTicketCost $)$

OUTPUT "Total passengers in train at ", Time[Count], ":00","were ", Passengers
25.0

OUTPUT "Amount received for train at ", Time[Count], ":00 ", "was \$", AmountPerTrain

Flag \leftarrow FALSE

IF Passengers > Highest THEN
Highest \leftarrow Passengers
TrainID \leftarrow Count
Flag \leftarrow TRUE
MultiHigh $\leftarrow 1$

IF Passengers $=$ Highest AND Flag = FALSE THEN

MultiHigh \leftarrow MultiHigh +1
//If multiple trains have same number of passengers
ENDIF
//Total passengers depart = Total passengers return

NEXT Count

Pre Release Solution May June 2W2wwsemgalecture.com Course Code 2210/22

OUTPUT "Total number of passengers for the day is ", TotalPassengers
OUTPUT "Total amount of money taken for the day is $\$$ ", TotalMoney

IF MultiHigh $=1$ THEN

OUTPUT "Train at ", Time[TrainID], " has the highest number of passengers today"
OUTPUT "Total number of passengers in this journey was", Highest

ELSE

IF TotalPassengers > 0 THEN
OUTPUT MultiHigh, " trains have same high number of passengers today"
ENDIF
ENDIF

TASK 3 OUTPUT: (Test data: Group of 50, Departure at 9:00 and arrival at 10:00)

```
Total passengers in train at 9:00 were 50
Amount received for train at 9:00 was $1125.0
Total passengers in train at 11:00 were 0
Amount received for train at 11:00 was $0.0
Total passengers in train at 13:00 were 0
Amount received for train at 13:00 was $0.0
Total passengers in train at 15:00 were 0
Amount received for train at 15:00 was $0.0
Total passengers in train at 10:00 were 50
Amount received for train at 10:00 was $1125.0
Total passengers in train at 12:00 were 0
Amount received for train at 12:00 was $0.0
Total passengers in train at 14:00 were 0
Amount received for train at 14:00 was $0.0
Total passengers in train at 16:00 were 0
Amount received for train at 16:00 was $0.0
Total number of passengers for the day is 50
Total amount of money taken for the day is $2250.0
2 trains have same high number of passengers today,
```

