For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
 'O’ Level Physics Formula Sheet

Measurements		
Base SI Units Kg m s A K mol		SI Unit for mass: Kilogram SI Unit for length: metre SI Unit for time: second SI Unit for current: Ampere SI Unit for Temperature: Kelvin SI Unit for Amount of substance: molar
```Number Prefix \(\mathrm{n}\left(10^{-9}\right)\) \(\mu\left(10^{-6}\right)\) \(\mathrm{m}\left(10^{-3}\right)\) c ( \(10^{-2}\) ) \(\mathrm{d}\left(10^{-1}\right)\) K \(\left(10^{3}\right)\) M (10 \({ }^{6}\) )```		nano   micro   milli   centi   deci   Kilo   Mega
Kinematics		
Average Speed $\mathbf{s}=\Delta \mathrm{d} / \Delta \mathrm{t}$   Average Velocity $\mathbf{v}=\Delta \mathrm{x} / \Delta \mathrm{t}$   Acceleration   $\mathbf{a}=\Delta \mathbf{v} / \Delta \mathrm{t}$		```= total distance travelled (area under d-time graph) \(=\) total displacement total time taken \(=\) change in velocity ocity (slope of displacement-time graph) eleration (slope of velocity-time graph)```
$\begin{aligned} & \mathbf{v}=u+a t \\ & \mathbf{x}=u t+1 / 2 a t^{2} \\ & \mathbf{v}^{2}=u^{2}+2 a x \\ & \\ & \mathbf{v}_{\text {free fall }}=\sqrt{2 g h} \end{aligned}$		initial velocity   final velocity   time   acceleration   displacement   height   gravitational constant $=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Dynamics		
Newton's First Law $\sum \vec{F}=0$ at equilibrium		A body continues to stay in its state of rest or uniform motion in a straight line as long as there is no net force/moment acting on the body.
Newton's Second Law $\mathrm{F}=\mathrm{ma}$		The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.
Newton's Third Law		For every force object A acts on object B, object B will exert an equal and opposite force on object A giving rise to Reaction/Normal Forces
Resolving forces   $F_{\text {horizontal }}=F_{r} \cos \theta$   $\mathrm{F}_{\text {vertical }}=\mathrm{F}_{\mathrm{r}} \sin \theta$		
Mass, Weight, Density		
Weight$\mathbf{w}=\mathrm{mg}$		$\begin{aligned} & \mathrm{W}=\text { Weight } \\ & \mathrm{m}=\text { mass } \\ & \mathrm{g}=\text { gravitational field strength } \end{aligned}$
$\begin{aligned} & \text { Density } \\ & \rho=\frac{\mathrm{m}}{\mathrm{~V}} \end{aligned}$		$\begin{aligned} & \rho=\text { density } \\ & \mathrm{m}=\text { mass } \\ & \mathrm{V}=\text { volume } \end{aligned}$
Turning effect of Force		
Moment of Force$\mathrm{M}=\mathrm{F} \mathrm{~d}$		$\begin{aligned} & \hline \mathrm{M}=\text { Moment } \\ & \mathrm{F}=\text { force } \\ & \mathrm{d}=\perp \text { distance from force to pivot } \end{aligned}$


Principle of Moment   $\Sigma$ Anticlockwise Moment   $=\Sigma$ Clockwise Moment	For a body in rotational equilibrium, Sum of ACW Moment = sum of CW Moment
Pressure	
$\begin{aligned} & \text { Pressure } \\ & \mathbf{P}=\frac{\mathrm{F}}{\mathrm{~A}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}=\text { Pressure } \\ & \mathrm{F}=\text { Force over area, } \mathrm{A} \\ & \mathrm{~A}=\text { Area } \end{aligned}$
Pressure of liquid column $\mathbf{P}=\mathrm{h} \rho \mathrm{~g}$	$\begin{aligned} & \hline \text { P = Pressure } \\ & \rho=\text { density, } \\ & h=\text { height of liquid column } \\ & g=\text { gravitational field strength. } \end{aligned}$
Energy, Work and Power	
Work Done $\mathbf{W}=\mathrm{Fd}$	$\begin{aligned} & \text { W = work done } \\ & \mathrm{F}=\text { force } \\ & \mathrm{d}=\text { distance in direction of force } \end{aligned}$
Power $\mathbf{P}=\mathrm{W} / \mathrm{t}=\mathrm{Fv}$	Work done per unit time, t
Kinetic Energy $\mathbf{E}_{\mathbf{k}}=\frac{1}{2} \mathrm{mv}^{2}$	$\begin{aligned} & \mathrm{E}_{\mathrm{k}}=\text { Kinetic Energy } \\ & \mathrm{m}=\text { mass } \\ & \mathrm{v}=\text { velocity } \end{aligned}$
Gravitational Potential Energy $\mathbf{E}_{\mathrm{p}}=\mathrm{mgh}$	$\begin{aligned} & \mathrm{g}=\text { gravity }=9.81 \mathrm{~m} / \mathrm{s} \\ & \mathrm{~h}=\text { height } \\ & \mathrm{m}=\text { mass } \end{aligned}$
Conservation of Energy $\mathrm{E}_{1}=\mathrm{E}_{2}$	$\mathrm{E}_{1}=$ Total Energy Before   $\mathrm{E}_{2}=$ Total Energy After   Energy cannot be created or destroyed. It can only be transformed or converted into other forms.
Kinetic Model of Matter	
Ideal Gas Law PV $\propto$ T $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	$\begin{aligned} & \mathrm{P}=\text { pressure of fixed mass of gas } \\ & \mathrm{V}=\text { volume occupies by fixed mass } \\ & \text { of gas } \\ & \mathrm{T}=\text { Temperature of gas } \\ & \text { Subscript } 1 \text { = initial state } \\ & \text { Subscript } 2 \text { = final state } \\ & \hline \end{aligned}$
Thermal Properties of Matter	
Specific Heat Capacity $\hat{E}=\mathrm{mc} \Delta \mathrm{~T}$	c = Specific heat capacity (Energy required to raise the temperature of 1 kg of the object by $1^{\circ} \mathrm{C}$ ) $\mathrm{m}=\text { mass }$   $\Delta \mathrm{T}=$ change in temperature.
Latent Heat   For melting,   $\mathbf{E}=\mathrm{m}_{\mathrm{fusion}}$   For boiling, $\mathbf{E}=m L_{\text {vaporization }}$	$\mathrm{L}_{\text {fusion }}=$ latent heat of fusion (Energy required to change 1 kg of solid to liquid at the constant temp) $\mathrm{L}_{\text {vaporization }}=$ latent heat of vaporization (Energy required to change 1 kg of liquid to gas at the constant temp) $\mathrm{m}=\text { mass }$
General Wave Properties	
Wave Velocity $\mathbf{v}=\mathrm{f} \lambda$	$\begin{aligned} & \mathrm{v}=\text { velocity of a wave } \\ & \mathrm{f}=\text { frequency } \\ & \lambda=\text { wavelength } \\ & \hline \end{aligned}$
Wave frequency $\mathbf{f}=\frac{1}{T}$	$\begin{aligned} & \mathrm{T}=\text { Period } \\ & \mathrm{f}=\text { frequency } \end{aligned}$

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
'O’ Level Physics Formula Sheet

Light	
Law of Reflection $\Theta_{\mathrm{i}}=\Theta_{\mathrm{r}}$   $\Theta_{\mathrm{i}}=$ angle of incidence   $\Theta_{\mathrm{r}}=$ angle of reflection	
Snell's Law (refraction) $n_{1} \operatorname{Sin} \Theta_{i}=n 2 \operatorname{Sin} \Theta_{r}$   $\Theta_{\mathrm{i}}=$ angle of incidence   $\Theta_{\mathrm{r}}=$ angle of refraction	
Critical angle $\sin \boldsymbol{\Theta}_{\mathbf{c}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$   (special case of Snell's law where $\Theta_{r}=90^{\circ}$ )	
Refractive Index $\begin{aligned} & \mathbf{n}=\frac{\mathrm{c}}{\mathrm{v}} \\ & (\mathrm{n} \text { of air } \approx 1) \end{aligned}$	$\mathrm{c}=$ speed of light in vacuum. $\mathrm{v}=$ speed of light in medium Higher reflective index of a medium means light travel slower in the medium
$\begin{aligned} & \text { Magnification } \\ & \mathbf{M}=\frac{\mathrm{h}_{\mathrm{i}}}{\mathrm{~h}_{\mathrm{o}}}=\frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{o}}} \end{aligned}$	$\begin{aligned} & \hline M=\text { magnification } \\ & h=\text { height } \\ & d=\text { distance from lens } \\ & \text { Subscript } i=\text { image } \\ & \text { Subscript } o=\text { object } \\ & \hline \end{aligned}$
Current of Electricity	
Current $\mathbf{I}=\mathrm{Q} / \Delta \mathrm{t}$	Current = rate of flow of charges Q = Charge   $\mathrm{t}=$ time
Ohm's Law   Resistance $\mathbf{R}=\mathrm{V} / \mathrm{I}$	$\begin{aligned} & \text { V = voltage, } \\ & \mathrm{R}=\text { resistance } \\ & \mathrm{I}=\text { current } \end{aligned}$
Resistance of a wire $\mathbf{R}=\rho \mathrm{L} / \mathrm{A}$	$\begin{aligned} & \hline \rho=\text { resistivity } \\ & L=\text { length of wire } \\ & A=\text { cross sectional area } \end{aligned}$
D.C. Circuits	
Kirchoff's $\mathbf{1}^{\text {st }}$ Law $\sum \mathrm{I}_{\mathrm{in}}=\sum \mathrm{I}_{\mathrm{out}}$	Conservation of charges. $\sum \mathrm{I}_{\mathrm{in}}=$ Sum of current going into a junction   $\sum \mathrm{I}_{\text {out }}=$ Sum of current going out of a junction
Kirchoff's $\mathbf{2 ~}^{\text {nd }}$ Law $\sum \mathrm{V}=\mathrm{E} . \mathrm{M} . \mathrm{F}$	$\Sigma \mathrm{V}=$ Sum of potential difference V across all components in a circuit E.M.F = Voltage supplied by the power supply.
Resistance in Series $\mathrm{R}_{\text {total }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$	
Resistance in Parallel $\frac{1}{\mathrm{R}_{\text {total }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$	


Practical Electricity	
Electric Power $\mathbf{P}=\mathrm{VI}=\mathrm{V}^{2} / \mathrm{R}=\mathrm{I}^{2} \mathrm{R}$	$\begin{aligned} & \hline \mathrm{P}=\text { Power } \\ & \mathrm{V}=\text { voltage } \\ & \mathrm{R}=\text { resistance } \\ & \mathrm{I}=\text { current } \\ & \hline \end{aligned}$
Electrical Energy $\mathbf{E}=\mathrm{Pt}=(\mathrm{VI}) \mathrm{t}$	$\begin{aligned} & \text { E = energy output } \\ & \text { P = power } \\ & \text { t = time } \\ & \text { V = voltage } \\ & I=\text { current } \end{aligned}$
Electromagnetism	
Transformer $\frac{V_{\mathrm{p}}}{\mathrm{~V}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{s}}}$   (ideal transformer) $\mathrm{V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}}=\mathrm{V}_{\mathrm{S}} \mathrm{I}_{\mathrm{S}}$	$\begin{aligned} & \hline \mathrm{V}=\text { voltage } \\ & \mathrm{N}=\text { number of coils } \\ & \mathrm{I}=\text { current } \\ & \text { Subscript } \mathrm{p} \text { = primary coil } \\ & \text { Subscript } \mathrm{s}=\text { secondary coil } \end{aligned}$
Right hand grip	
Fleming's Right Ha Rule	
Fleming's Left Han Rule	



