For Live Classes, Recorded Lectures, Notes \& Past Papers visit:
www.megalecture.com Additional Mathematics SA2 Overall Revision Notes Chapters 1-2 (Simultaneous Equations, Indices, Surds, Logarithms

Chapter 1: Simultaneous Equations

There are 3 methods in solving simultaneous linear equations:
1.) Substitution Method
2.) Elimination Method
3.) Graphical Method

There are several steps to follow:
1.) Express one unknown in terms of another unknown (avoid fractional expressions)
2.) Substitute this newly - formed equation into the non-linear equation
3.) Solve for the unknown
4.) Use the linear equation to find the other unknown.

Chapter 2.1: Surds

$$
\begin{aligned}
& \sqrt{m} \times \sqrt{n}=\sqrt{m n} \\
& \frac{\sqrt{m}}{\sqrt{n}}=\sqrt{\frac{m}{n}} \\
& a \sqrt{m}+b \sqrt{m}=a+b \sqrt{m} \\
& (\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b \\
& a+b \sqrt{k}=c+d \sqrt{k} \\
& a=c \text { and } b=d
\end{aligned}
$$

Rationalising Denominator:
Multiply the square root to
both numerator and denominator.

Chapter 2.2: Indices

$a^{m} \times a^{n}=a^{m+n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{m} \times b^{m}=(a b)^{m}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{m} \div b^{m}=\left(\frac{a}{b}\right)^{m}$
$a^{0}=1$
$a^{-n}=\frac{1}{a^{n}}$
$x\left(a^{-n}\right)=\frac{x}{a^{n}}$
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
$a^{x}=a^{n}$
$\therefore x=n$
When a > 1

Chapter 2.3: Logarithms

No.	$\begin{array}{c}\text { Rules of } \\ \text { Logarithms (base } a)\end{array}$	$\begin{array}{c}\text { Rules of Common } \\ \text { Logarithms }\end{array}$	$\begin{array}{c}\text { Rules of Natural } \\ \text { Logarithms }\end{array}$
1.	$\begin{array}{l}x=\log _{a} y \Leftrightarrow y=a^{x} \\ y>0(a>0, a \neq 1)\end{array}$	$\begin{array}{l}x=\lg y \Leftrightarrow y=10^{x} \\ y>0 \text { (base } 10) \\ \lg y=\log _{10} y\end{array}$	$\begin{array}{l}x=\ln y \Leftrightarrow y=\mathrm{e}^{x} \\ y>0 \text { (base e) }\end{array}$
$\ln y=\log _{e} y$			
$\mathrm{e}=2.71828 \ldots$			

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com Additional Mathematics SA2 Overall Revision Notes
 Chapters 3-4 Quadratic Functions and Inequalities

Sum and Product of Roots

In $a x^{2}+b x+c$
Sum of roots $\alpha+\beta=-\frac{b}{a}$
Product of roots $\alpha \beta=\frac{c}{a}$
We can use the sum and product of roots to write an equation.
$x^{2}-($ sum of roots $) x+($ product of roots $)=0$

Intersection Terms

Crosses / Cuts	2 points of intersection, 2 real/distinct roots/ discriminant more than 0.
Touches / tangent	1 point of intersection, 2 real/equal roots/ discriminant $=0$.
Does not intersect / meet	0 points of intersection, no real roots, discriminant < 0.
Meet	Discriminant more than or equal to 0.

Quadratic Inequality

$(x-a)(x-b)>0, x<a$ or $x>b$
$(x-a)(x-b) \leq 0, a \leq x \leq b$

Discriminant and Nature of Roots

(a) $b_{i}^{2}-4 a c>0$

Two distinct real roots.
\Rightarrow twox-Intercepts
(b) $b^{2}-4 a c=0$

Equal real roots.
\Rightarrow only onee x-intercept and the x-axis is a tangent to the parabola
-
(c) $b^{2}-4 a c<0$

No real roots
\Rightarrow tho entintercept and $y=a x^{2}+b x+c$ is ether always positive or always negative

Chapter 8: Linear Law

The graph of a linear equation $Y=m X+c$ is a straight line with gradient m and y intercept c.
There are 2 parts to solving linear law questions: Draw a straight line graph to determine gradient and y-intercept, and to find the equation of the straight line.

Key Steps:

1.) Force the equation into the form of $Y=m X+c$.
2.) Take some experimental values of x and y and compute the corresponding values of X and Y.
3.) Use these computed values to plot the points on a graph with X and Y axis.
4.) Draw a line passing through the plotted points. Always have more space at the lower end of graph for the line to cut the Y axis for Y -intercept.
5.) Obtain the Gradient and the Y-intercept.

Note: $\ln \mathrm{Y}=\mathrm{mX}+\mathrm{c}$
(a): Y must not have any coefficient,
(b): mX is part constant and part variable.
(c): c must not contain any variable X and Y .

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
Additional Mathematics SA2 Overall Revision Notes
Chapters 3-4
Polynomials/Partial Fractions \qquad

Partial Fractions

$\mathrm{g}(x)$ has	Corresponding Partial Fraction(s)
linear factor $a x+b$	$\frac{A}{a x+b}$
repeated linear factor $(a x+b)^{2}$	$\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}$
quadratic factor $x^{2}+c^{2}$ (which cannot be factorised)	$\frac{A x+B}{x^{2}+c^{2}}$

Basically, a linear factor that cannot be factorised is to be remained in the same form. A repeated linear factor like $(a x+b)^{2}$ is to be split into 2: $\frac{A}{(a x+b)}+\frac{B}{(a x+b)^{2}}$.

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Chapter 5: The Modulus Functions

For a real number $x,|x|$ represents the modulus / absolute value of x. It is always nonnegative.

To draw a modulus graph of the function, first draw the function then reflect the part of the function which is below the x axis upwards.

Formulas:
$|x|=k \Rightarrow x=k$ or $x=-k$
$|f(x)|= \pm g(x), g(x) \geq 0$
$|f(x)|=|g(x)|, f(x)= \pm g(x)$
$|a b|=|a||b|$
$\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$

Chapter 6: Binomial Theorem

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2} \ldots+b^{n} \\
& (1+x)^{n}=1+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n-1} x^{n-1}+x^{n} \\
& \binom{n}{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!}
\end{aligned}
$$

Properties:
1.) Have $n+1$ terms
2.) Sum of powers of a and $b=n$.
r+1th term: $T_{r+1}=\binom{n}{r} a^{n-r} b^{r}$ or $T_{r+1}=\binom{n}{r} b^{r}$

Chapter 7: Coordinate Geometry

Overview

Formulae for solving coordinate geometry questions.
Let the points be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
(1) Distance between 2 points
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(10) Ratio Theorem

If $P(x, y)$ divides $A B$ in the ratio $m: n$, then

$$
P=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

(9) To prove for parallelogram, use midpoint formula
(8) Area of polygon

Given $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$
Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right|$
$\left.=\frac{1}{2} \right\rvert\,\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}\right)$

$$
-\left(x_{2} y_{1}+x_{3} y_{2}+x_{1} y_{3}\right) \mid
$$

Given $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$,
$C\left(x_{3}, y_{3}\right), \mathrm{D}\left(x_{4}, y_{4}\right)$
Area of ABCD
$=\frac{1}{2}\left|\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right|$
$\left.=\frac{1}{2} \right\rvert\,\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{4}+x_{4} y_{1}\right)$ $-\left(x_{2} y_{1}+x_{3} y_{2}+x_{4} y_{3}+x_{1} y_{4}\right) \mid$
(2) Midpoint between 2 points
$=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Total Solution of a Coordinate Geometry Question

(3) Gradient of line joining 2 points $=\frac{1 / 2}{}-1 / 2$
If parallel \Rightarrow gradient $m_{1}=$ m If perpendicular \Rightarrow gradien $m_{1} m_{2}=-1$
(4) To prove that A, B and C are on same line (collinear) Gradient $A B=$ Gradient $A C$ Gradient BC
(5) Equation of a straight line
(a) $y=m x+c$
(b) $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(c) $y-y_{1}=m\left(x-x_{1}\right)$ where $m=$ gradient, $c=y$-intercept
(6) Equation of Perpendicular Bisector
Given $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$
Step 1 Find midpoint of $A B$
Step 2 Find gradient of $A B$
Step 3 Find gradient of perpendicular line to $A B$
Step 4 Using (1), (3), obtain equation

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com
 Additional Mathematics

Chapter 9
Curves and Circles (Summary)

Chapter 9.1: Graphs of $y=a x^{n}$

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

2 Graphs of $y=a x^{n}$ where n is a simple rational number
2. For $y=\sqrt{x}$ or $y=x^{\frac{1}{2}}$, x will be more or equal to 0 (x cannot be less than 0). y is also more than 0 as square root is taken to be positive.

Legend: Black: $y=\sqrt{x}$. Brown: $y=\sqrt[3]{x}$.

2. Comparing concavity of curves.

When $y=\sqrt{x}$, graph concaves downwards. When $y=x$, graph is straight and constant. When $y=x^{2}$, graph concaves upwards.

3 Graph of $y^{2}=k x$

1. The graph of $y^{2}=x$ is actually a 90 degree clockwise rotation of the graph of $y=x^{2}$ about the origin O .
2. In general, the graphs of $y^{2}=k x$ have the same properties as that of $y^{2}=x$ except that they differ in the steepness.
3. Each graph passes through $(0,0)$ and is symmetrical about the x axis.

4 Equations of Circles

Equation	$(x-a)^{2}+(y-b)^{2}=r^{2}$	$x^{2}+y^{2}+2 g x+2 f y+c=0$
Center of circle	(a, b)	$(-g,-f)$
Radius	r	$\sqrt{g^{2}+f^{2}-c}$

5 Linear Law (Revision)

Always make an equation to $\mathrm{Y}=\mathrm{mX}+\mathrm{c}$. (where m and c must be constant!)

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Trigonometry Functions, Simple Trigonometric Identities/Equations

Chapter 11.1: Angle in Radian Measure

$180^{\circ}=\pi \mathrm{rad}$
$1^{\circ}=\frac{\pi}{180} \mathrm{rad}$
$1 \mathrm{rad}=\frac{180}{\pi} \approx 57.3^{\circ}$

Chapter 11.2:

Trigonometric Ratios for
Acute Angles
Just remember that the surd form of these numbers:
$\frac{\sqrt{3}}{3} \approx 0.577$
$\frac{\sqrt{2}}{2} \approx 0.707$
$\frac{\sqrt{3}}{2} \approx 0.806$

Chapter 11.6:
Trigonometric Ratios of Negative Angles
$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$
$\tan (-\theta)=-\tan \theta$

Chapter 11.3: Trigonometric Ratios of Complimentary Angles

$$
\begin{array}{l|l}
\sin \left(90^{\circ}-\theta\right)=\cos \theta & \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
\cos \left(90^{\circ}-\theta\right)=\sin \theta & \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
\tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta} & \tan \left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan \theta}
\end{array}
$$

Chapter 11.4: Trigonometric Ratios of General Angles

The acute angle formed when a line rotates about the origin is called the basic angle, denoted by α. Always make the basic angle positive.

$1^{\text {st }}$ Quadrant	$2^{\text {nd }}$ Quadrant	$3^{\text {rd }}$ Quadrant	$4^{\text {th }}$ Quadrant
$\alpha=\theta$	$\alpha=180^{\circ}-\theta$	$\alpha=180^{\circ}+\theta$	$\alpha=360^{\circ}-\theta$
	$\alpha=\pi-\theta$	$\alpha=\pi+\theta$	$\alpha=2 \pi-\theta$

Chapter 11.5: Trigonometric Ratios of their General Angles and their Signs

In the $1^{\text {st }}$ quadrant, all 3 are positive.
In the $2^{\text {nd }}$ quadrant, only tangent is positive.
In the $3^{\text {rd }}$ quadrant, only sine is positive. In the $4^{\text {th }}$ quadrant, only cosine is positive.
If still turning anticlockwise after $4^{\text {th }}$ quad, add 360° or 2π.

Chapter 11.7: Solving Basic Trigonometric Equations

1.) By considering the sign of k, identify the possible quadrants where theta will lie.
2.) Find the basic angle alpha, the acute angle from e.g.: $\sin \theta=|k|$
3.) Find all the possible values of theta in the given interval.

Chapter 11.8: Graphs of the sine, cosine and tangent functions

In general, the curves $y=a \sin b x+c$ and $y=a \cos b x+c$ have axis $y=c$, amplitude a and period $\frac{360^{\circ} \circ \text { or } 2 \pi}{b}$
Graphs are shown on the next page.
www.studgyuide.pk

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Chapter 12.1: Summary of Identities

Simple Trigonometric Identities and Equations

Basic Identities

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

Reciprocals of 3 trigo functions:
$\sec \theta=\frac{1}{\cos \theta}$
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

The "Squared Ratios"
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$
$1+\tan ^{2} \theta=\sec ^{2} \theta$

In proving a
trigonometric identity, always start from the more complicated side (with the secant, cosecant and cotangent). The rest of the proving is all mechanical in nature!

