

Participant Group 1 (Males)	Score	Participant Group 2 (Females)	Score			
1	95	1	100			
2	78	2	123			
3	102	3	89			
4	79	4	140			
5	84	5	97			
6	93	6	110			
7	62	7	150			
8	92	8	104			
					9	96

Step 1: Rank the scores for the participants as a whole
Unlike with Spearman's where you rank each series of data by itself, here, we are going to rank the scores of all seventeen participants as if they were from one group. The lowest score (i.e. fastest time) gets rank 1, and so on

Step 2: Label the groups N_{A} and N_{B} and work out the value of N for each group If one group is smaller than the other, the smaller group will be N_{A}

Step 3: Taking the groups separately, add together the ranks for each group
This is described as ΣR_{A} for Group A, and ΣR_{B} for Group B

Participant Group 1 (Males) $N_{A}=8$	Score	Ran	Participant Group 2 (Females) $N_{B}=9$	Score	Rank
1	95	8	1	100	11
2	78	2	2	123	15
3	102	12	3	89	5
4	79	3	4 -	140	16
5	84	4	5	97	10
6	93	7	6	110	14
7	62	1	7	150	17
8	92	6	8	104	13

Step 4: Use the formula to calculate a Mann-Whitney U test result for Group A
$U_{A}=N_{A} N_{B}+\left(N_{A}\left(N_{A}+1\right)\right) / 2-\Sigma R_{A} \quad U_{A}=(8 \times 9)+(8 \times 9) / 2-43 \quad U_{A}=(72+36)-43 \quad U_{A}=65$
Step 5: Use the formula to calculate the result for Group B
$U_{B}=N_{A} N_{B}+\left(N_{B}\left(N_{B}+1\right)\right) / 2-\Sigma R_{B} \quad U_{B}=(8 \times 9)+(9 \times 10) / 2-110 \quad U_{B}=(72+45)-110 \quad U_{B}=7$
Step 6: Take the smaller of U_{A} and U_{B} and label that value as U
In our example, 7 is smaller than 65 , so U_{B} becomes U (so in our example, $U=7$)
The value for U can then be checked against the critical value tables to see if the findings are statistically significant. U must be less than or equal to the critical value in the table. An exemplar table is shown here.

Level of significance $\boldsymbol{p} \leq 0.05$							Our value for U was 7. The critical value is 18 (which has been highlighted in the table) as N_{A} was 8 and N_{B}
$N_{\text {B }}$ -		8	9	10	11	12	
$N_{\text {A }}$	7	13	15	17	19	21	was 9 . Because 7 is less than 18 , we can say that the results are statistically significant, and that they
V	8	15	18	20	23	26	
	9	18	21	24	27	30	support the alternative hypothesis, that males are
	10	20	24	27	30	33	better at jigsaw puzzles than women.
	11	23	27	31	34	37	
youtube. com/c/MegaLecture/							
$+923367801123$							

