ELEMENTS and COMPOUNDS

MIXTURES and their separation

CHEMICAL REACTIONS and EQUATIONS

	- Compounds can be represented by a FORMULA, eg sodium chloride NaCl (ionic, 2 elements, 1 of sodium and 1 of chlorine), methane $\mathbf{C H}_{4}$ (covalent, shown on the left has 2 elements in it, 4 of carbon and 1 of hydrogen*) and glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (covalent, 3 elements, 6 atoms of carbon, 12 of hydrogen and 6 of oxygen). There must be at least two different types of atom (elements) in a compound.(* the $\mathbf{1}$ is never written in the formula, no number means 1) - Compounds have a fixed composition and therefore a fixed ratio of atoms represented by a fixed formula, however the compound is made or formed. - In a compound the elements are not easily separated by physical means, and quite often not easily by chemical means either. - The compound has properties quite different from the elements it is formed from. For example soft silvery reactive sodium + reactive green gas chlorine ==> colourless, not very reactive crystals of sodium chloride. - The formula of a compound summarises the 'whole number' atomic ratio of what it is made up of eg methane CH_{4} is composed of 1 carbon atom combined with $\mathbf{4}$ hydrogen atoms. Glucose has 6 carbon : 12 hydrogen : 6 oxygen atoms, sodium chloride is $\mathbf{1}$ sodium : $\mathbf{1}$ chlorine atom. When there is only one atom of the element, there is no subscript number, the 1 is assumed eg Na in NaCl or C in CH_{4}. - When there is more than 1 atom of the same element, a subscript number is used eg the 4 in CH_{4} meaning 4 hydrogen atoms. - Sometimes, a compound (usually ionic), is partly made up of two or more identical groups of atoms. To show this more accurately () are used eg calcium hydroxide is $\mathrm{Ca}(\mathrm{OH})_{2}$ which makes more sense than $\mathrm{CaO}_{2} \mathrm{H}_{2}$ because the OH group is called hydroxide and exists in its own right in the compound. Similarly, aluminium sulphate has the formula - $\mathbf{A l}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ rather than $\mathrm{Al}_{2} \mathrm{~S}_{3} \mathrm{O}_{12}$, because it consists of two aluminium ions $\mathbf{A l}^{3+}$ and three sulphate ions $\mathrm{SO}_{4}{ }^{2-}$. - The word formula can also apply to elements. eg hydrogen H_{2}, oxygen O_{2}, ozone O_{3} (2nd unstable form of oxygen), phosphorus P_{4}, sulphur S_{8}, have 2, 2, 3, 4 and 8 atoms in their molecules. Elements like helium He are referred to as 'monatomic' because they exist as single uncombined atoms.
MIXTURE	A MIXTURE is a material made up of at least two substances which may be elements or compounds. They are usually easily separated by physical means eg filtration, distillation, chromatography etc. Examples: air, soil, solutions.
PURE	- PURE means that only one substance present in the material and can be an element or compound. - A simple physical test for purity and helping identify a compound is to measure the boiling point of a liquid. Every pure substance melts and boils at a fixed temperature. If a liquid is pure it may boil at a constant temperature (boiling point). An impure liquid could boil higher or lower than the expected boiling point and over a range of temperature.

	If a solid is pure, it will quite sharply at the melting point. An impure solid melts below its expected melting point and more slowly over a wider temperature range.
IMPURE	- IMPURE usually means a mixture of mainly one substance plus one or more other substances physically mixed in. - The \% purity of a compound is important, particularly in drug manufacture. Any impurities present are less cost-effective to the consumer and they may be harmful substances.
PURIFICATION	- Materials are purified by various separation techniques. - The idea is to separate the desired material from unwanted material. - they include: - Filtration to separate a solid from a liquid. You may want the solid or the liquid or both! - Simple distillation to separate a pure liquid from dissolved solid impurities which have a very high boiling point. - Fractional distillation to separate liquids with a range of different boiling points, especially if relatively close together. - Crystallisation to get a pure solid out of a solvent solution of it. - Chromatography can be used on a larger scale than spots' to separate out pure samples from a mixture.

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

METHODS of SEPARATING MIXTURES

Simple Distillation

- Distillation involves 2 stages and both are physical state changes.
- (1) The liquid or solution mixture is boiled to vaporise the most volatile component in the mixture (liquid $==>$ gas). The ant-bumping granules give a smoother boiling action.
- (2) The vapour is cooled by cold water in the condenser to condense (gas ==> liquid) it back to a liquid (the distillate) which is collected.
- This can be used to purify water because the dissolved solids have a much higher boiling point and will not evaporate with the steam.
- BUT it is too simple a method to separate a mixture of liquids especially if the boiling points are relatively close.

points in a huge fractionating column. At the top are the very low boiling fuel gases like butane and at the bottom are the high boiling big molecules of waxes and tar.

It is possible to analyse colourless mixture if the components can be made coloured eg protein can be broken down into amino acids and coloured purple by a chemical reagent called ninhydrin and many colourless organic molecules fluoresce when ultra-violet light is shone on them.

FILTRATION

 EVAPORATION
CRYSTALLISATION

- Filtration use a filter paper or fine porous ceramic to separate a solid from a liquid. It works because the tiny dissolved particles are too small to be filtered BUT any non-dissolved solid particles are too big to go through!
- Evaporation means a liquid changing to a gas or vapour. In separation, its removing the liquid from a solution, usually to leave a solid. It can be done
quickly with gentle heating or left out to 'dry up' slowly. The solid will almost certainly be less volatile than the solvent and will remain as a crystalline residue.
- Crystallisation can mean a liquid substance changing to its solid form. However, the term usually means what happens when the liquid from a solution has evaporated to a point beyond the solubility limit. Then solid crystals will 'grow' out of the solution.
- All three of these separation methods are involved in (1) separation of sand and salt mixtures or (2) salt preparations eg from dissolving an insoluble base in an acid.

Miscellaneous Separation Methods

MAGNET

This can be used to separate iron from a mixture with sulphur (see below). It is used in recycling to recover iron and steel from domestic waster ie the 'rubbish' is on a conveyer belt that passes a powerful magnet which pluck's out magnetic materials.

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

PHYSICAL CHANGES

These are changes which do not lead to new substances being formed. Only the physical state of the material changes. The substance retains exactly the same chemical composition. Examples

- melting, solid to liquid, easily reversed by cooling eg ice and liquid water are still the same $\mathrm{H}_{2} \mathrm{O}$ molecules.
- dissolving, eg solid mixes completely with a liquid to form a solution, easily reversed by evaporating the liquid eg dissolving salt in water, on evaporation the original salt is regained.
- So freezing, evaporating, boiling, condensing are all physical changes.
- separating a physical mixture eg chromatography, eg a coloured dye solution is easily separated on paper using a solvent, they can all be re-dissolved and mixed to form the original dye.
- So distillation, filtering are also physical changes.

CHEMICAL CHANGES - REACTIONS - reactants and products

- Heating iron and sulphur is classic chemistry experiment.
- A mixture of silvery grey iron filings and yellow sulphur powder is made.
- The iron can be plucked out with a magnet ie an easily achieved physical separation because the iron and sulphur are not chemically combined yet!
- They are still the same iron and sulphur.
- On heating the mixture, it eventually glows red on its own and a dark grey solid called iron sulphide is formed. Both observations indicate a chemical change is happening ie a new substance is being formed.
- We no longer have iron or sulphur BUT a new compound with different physical properties (eg colour) and chemical properties (unlike iron which forms hydrogen with acids, iron sulphide forms toxic nasty smelling hydrogen sulphide!).
- iron + sulphur ==> iron sulphide or in symbols: $\mathbf{F e}+\mathbf{S}==>$ FeS
- AND it is no longer possible to separate the iron from the sulphur using a magnet!
- So signs that a chemical reaction has happened include:
- colour changes,
- temperature changes,
- change in mass eg
- some solids when burned in air gain mass in forming the oxide eg magnesium forms magnesium oxide
- some solids lose mass when heated, eg carbonates lose carbon dioxide in thermal decomposition
- Therefore a chemical change is one in which a new substance is formed, by a process which is not easily reversed and usually accompanied by an energy (temperature) change. This is summarised as reactants $==>$ products as expressed in chemical equations in words or symbols.

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

THE CONSTRUCTION OF CHEMICAL EQUATIONS

"How to write and understand chemical equations"

- Seven equations are presented, but approached in the following way
- (1a-7a) the individual symbols and formulae are explained
- ($\mathbf{1 b}-7 \mathrm{~b}$) the word equation is presented to summarise the change of reactants to products
- (1c-7c) a balanced 'picture' equation which helps you understand reading formulae and atom counting to balance the equation
- (1d-7d) the fully written out symbol equation with state symbols (often optional for starter students)

Chemical Symbols and Formula

- For any reaction, what you start with are called the reactants, and what you form are called the products.
- So any chemical equation shows in some way the overall chemical change of ...
- REACTANTS ==> PRODUCTS, which can be written in words or symbols/formulae.
- It is most important you read about formula in an earlier section of this page.
- empirical formula and molecular formula are dealt with on another page.
- In the equations outlined below several things have been deliberately simplified. This is to allow the 'starter' chemistry student to concentrate on understanding formulae and balancing chemical equations. Some teachers may disagree with this approach BUT my simplifications are:
- the word 'molecule' is sometimes loosely used to mean a 'formula',
- the real 3D shape of the 'molecule' and the 'relative size' of the different element atoms is ignored
- if the compound is ionic, the ion structure and charge is ignored, its just treated as a formula

Molecular and Structural Formulas

A molecular formula gives the types and the count of atoms for each element in a compound. An example of a molecular formula is ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$. Here the formula indicates carbon and hydrogen are combined in ethane. The subscripts tell us that there are 2 carbon atoms and 6 hydrogen atoms in a formula unit.

The structural formula shows the atoms in a formula unit and the bonds between atoms as lines. Single bonds are one line, Double bonds are two lines. Triple bonds are three lines. The Lewis dot structure shows
the number of valence electrons and types of bonds in the molecule.

Lewis dot structure

Ball and stick model

Electron pairs that are shared are physically between the symbols for the atoms. Electron pairs that are unshared are called lone pairs. Lone pairs are not between atom symbols.

1a	- A single symbol means an uncombined single atom of the element, or Fe 1 atom of iron, or $\mathbf{S} 1$ atom of sulphur (2 Fe would mean two atoms, 5 S would mean five atoms etc.) or the formula FeS means one atom of iron is chemically combined with 1 atom of sulphur to form the compound called iron sulphide

(Na)(O) hydrogen to form the compound called sodium hydroxide
(H)(1) or the formula $\mathbf{H C l}$ means 1 atom of hydrogen is combined with 1 atom of chlorine to form 1 molecule of the compound called hydrochloric acid
(Na)Cl
or the formula $\mathbf{N a C l}$ means 1 atom of sodium are combined with 1 atom chlorine to form the compound called sodium chloride
(1)O
or the formula $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ means 2 atoms of hydrogen are chemically combined with 1 atom of oxygen to form the compound called water.

- or the symbol $\mathbf{M g}$ means $\mathbf{1}$ atom of the element called magnesium

or $\mathbf{2 H C l}$ means two separate molecules of the compound called hydrochloric acid (see example 2)

or the formula $\mathbf{M g C l}_{\mathbf{2}}$ means $\mathbf{1}$ formula of the compound called magnesium chloride, made of one atom of magnesium and two atoms of chlorine.
- (H)(H) or the formula \mathbf{H}_{2} means $\mathbf{1}$ molecule of the element called hydrogen made up of two joined hydrogen atoms

For Live Classes, Recorded Lectures, Notes \& Past Papers visit:

 www.megalecture.comor the formula CuCO_{3} means one formula of the compound called copper carbonate, made up of one atom of copper is combined with one atom of carbon and three atoms of oxygen to form the compound copper carbonate

or the formula $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ means one formula of the compound called sulphuric acid, which is made up of two atoms of hydrogen, one atom of sulphur and four atoms of oxygen

or the formula $\mathbf{C u S O}_{\mathbf{4}}$ means one formula of the compound called copper sulphate which is made up of one atom of copper, one atom of sulphur and four atoms of oxygen

- $\mathrm{H}_{2} \mathbf{O}$ (example 2)
- O. $\left(\mathrm{O}\right.$ or the formula CO_{2} means one molecule of the compound called carbon dioxide which is a chemical combination of one atom of carbon and two atoms of oxygen.

5a

(H)(C)

- (H) or the formula $\mathbf{C H}_{4}$ means one molecule of the compound called methane which is made of one atom of carbon combined with four atoms of hydrogen

or $\mathbf{2 O}_{2}$ means two separate molecules of the element called oxygen, and each oxygen molecule consists of two atoms of oxygen
- CO_{2} (see also example 4)
- (H)O(H) 十(H a(S) (H) or $2 \mathrm{H}_{2} \mathrm{O}$ means two separate molecules of the compound called water (see

or the formula $\mathbf{M g}(\mathbf{O H})_{2}$ is the compound magnesium hydroxide made up of one magnesium, two oxygen and two hydrogen atoms BUT the OH is a particular combination called hydroxide within a compound, so it is best to think of this compound as a combination of an Mg and two OH 's, hence the use of the ().

or $\mathbf{2} \mathbf{H N O}_{\mathbf{3}}$ means two separate molecules of the compound nitric acid, each molecule is made up of one hydrogen atom, one nitrogen atom and three oxygen atoms.

or the formula $\mathbf{M g}\left(\mathbf{N O}_{3}\right)_{2}$ is the compound magnesium nitrate, it consists of a magnesium (ion) and two 'nitrates' (ions), each nitrate consists of one nitrogen and three oxygen atoms, again the

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

	nitrate is a particular combination of atoms within a compound and hence the use of () again. - (H)OX $(\mathrm{H})(\mathrm{O})$ or $\mathbf{2 H}_{2} \mathrm{O}$ meaning two molecules of the compound water (see also examples 2 and 5)
7a	(OA1OA1O or the formula $\mathrm{Al}_{2} \mathbf{O}_{\mathbf{3}}$ means one formula of the compound called aluminium oxide, made up of two atoms of aluminium Al and three atoms of oxygen O or $\mathbf{3 H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ meaning three molecules of the compound called sulphuric acid (see also example 4) or the formula $\mathbf{A l}_{2}\left(\mathbf{S O}_{4}\right)_{3}$ means one formula of the compound called aluminium sulphate, it consists of two aluminium, three sulphur and twelve oxygen atoms BUT the SO_{4} is a particular grouping called sulphate, so it is best to think of the compound as a combination of two Al's and three SO_{4} 's $(\mathrm{HO}(\mathrm{H}+\mathbb{\mathrm { H }} \mathrm{O} \mathrm{O} \mathrm{H}+\mathbb{H} \mathrm{O}(\mathrm{H}+$ or $\mathbf{3} \mathbf{H}_{2} \mathbf{O}$ means three separate molecules of the compound called water (see also examples 2 and 5)
	-
	Chemical word equations $==>$ means the direction of change from reactants $=\mathbf{t o}=>$ products no symbols or numbers are used in word equations always try to fit all the words neatly lined up from left to right, especially if its a long word equation eg for clarity in example 4, some names are split in two parts using two lines, one under the other, this 'style' helps understanding when it comes to revision!
1b	iron + sulphur $==>$ iron sulphide
2b	sodium hydroxide + hydrochloric acid $==>$ sodium chloride + water
3b	magnesium + hydrochloric acid $==>$ magnesium chloride + hydrogen
4b	
5b	methane + oxygen ==> carbon dioxide + water
6b	magnesium hydroxide + nitric acid $==>$ magnesium nitrate + water
7b	aluminium oxide + sulphuric acid $==>$ aluminium sulphate + water

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Chemical picture equations

There are three main points to writing and balancing equations

- Writing the correct symbol or formula for each equation component.
- Using numbers if necessary to balance the equation.
- if all is correct, then the sum of atoms for each element should be the same on both side of the equation arrow
- in other words: atoms of products = atoms of reactants
- This is a chemical conservation law of atoms and later it may be described as the 'law of conservation of mass.
- the $\mathbf{7}$ equations are first presented in 'picture' style and then written out fully with state symbols
- The individual formulas involved and the word equations have already been presented above.
- PRACTICE QUESTIONS - words and symbols
- Multiple choice quiz on balancing numbers
- Word-fill exercises
- Reactions of acids with metals, oxides, hydroxides and carbonates.

1C	(F) $+\mathrm{S} \rightarrow \mathrm{Fe}(\mathrm{s}$ - on average one atom of iron chemically combines with one atom of iron forming one molecule of iron sulphide - atom balancing, sum left = sum right: $1 \mathrm{Fe}+1 \mathrm{~S}=(1 \mathrm{Fe}+1 \mathrm{~S})$ - two elements chemically combining to form a new compound
2C	$\mathrm{Na}(\mathrm{O}(\mathrm{H})+(\mathrm{H})(\mathrm{Cl}) \mathrm{Na}(\mathrm{Cl})+(\mathrm{H})(\mathrm{O})$ - the reactants are one molecule of sodium hydroxide and one molecule of hydrochloric acid - the products are one molecule of sodium chloride and one molecule of water - all chemicals involved are compounds - atom balancing, sum left = right: $(1 \mathrm{Na}+1 \mathrm{O}+1 \mathrm{H})+(1 \mathrm{H}+1 \mathrm{Cl})=(1 \mathrm{Na}+1 \mathrm{Cl})+(2 \mathrm{H} \mathbf{s}+1 \mathrm{O})$
3c	$(\mathrm{Mg})+(\mathrm{H})(\mathrm{Cl})+(\mathrm{H})(\mathrm{Cl}) \longrightarrow(\mathrm{Cl})(\mathrm{Mg})+(\mathrm{Cl})(\mathrm{H})$ - one atom of magnesium reacts with two molecules of hydrochloric acid - the products are one molecule of magnesium chloride and one molecule of hydrogen - $\quad \mathbf{M g}$ and $\mathrm{H}-\mathrm{H}$ are elements, $\mathrm{H}-\mathrm{Cl}$ and $\mathrm{Cl}-\mathrm{Mg}-\mathrm{Cl}$ are compounds - atom balancing, sum left = right: $(1 \mathrm{Mg})+(1 \mathrm{H}+1 \mathrm{Cl})+(1 \mathrm{H}+1 \mathrm{Cl})=(1 \mathrm{Mg}+2 \mathrm{Cl}$'s) $+(2 \mathrm{H} ' \mathrm{~s})$
4C	- the reactants are one formula of copper carbonate and one molecule of sulphuric acid - the products are one formula of copper sulphate, one molecule of water and one molecule of carbon dioxide - all molecules are compounds in this reaction

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

- atom balancing, sum left = sum right: (1 Cu + $1 \mathrm{C}+3 \mathrm{O}$'s) + (2 H's +1S +40's) $=(1 \mathrm{Cu}+1 \mathrm{~S}+4$ O 's $)+(2 \mathrm{H} ' \mathrm{~s}+1 \mathrm{O})+(1 \mathrm{C}+2 \mathrm{O} \mathrm{s})$

- one molecule of methane is completely burned by two molecules of oxygen
- to form one molecule of carbon dioxide and two molecules of water
 $+(2 \mathrm{H}$'s + 10)

- one formula of magnesium hydroxide reacts with two molecules of nitric acid to form one formula of magnesium nitrate and two molecules of water (all compounds)
 $30 ' s)=(1 \mathrm{Mg}+2 \mathrm{~N}$'s +6 O 's $)+(2 \mathrm{H}$'s $+1 \mathrm{O})+(2 \mathrm{H} ' \mathrm{~s}+1 \mathrm{O})$

- one formula of aluminium oxide reacts with three molecules of sulphuric acid
- to form one formula of aluminium sulphate and three molecules of water
- note the first use of numbers (3) for the sulphuric acid and water!
- so picture three of them in your head, otherwise the picture gets a bit big!
 O's) + $3 \times(2 \mathrm{H}$'s + 10)

Chemical symbol equations (rules already stated above)

- $\mathrm{Fe}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})}==>\mathrm{FeS}_{(\mathrm{s})}$
- atom balancing, sum left = sum right: $1 \mathrm{Fe}+1 \mathrm{~S}=(1 \mathrm{Fe}+1 \mathrm{~S})$
- all the reactants (what you start with) and all the products (what is formed) are all solids in this case.
- When first learning symbol equations you probably won't use state symbols at first (see end note).
- $\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})}==>\mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
- atom balancing, sum left = right: $(1 \mathrm{Na}+1 \mathrm{O}+1 \mathrm{H})+(1 \mathrm{H}+1 \mathrm{Cl})=(1 \mathrm{Na}+1 \mathrm{Cl})+(2 \mathrm{H} \mathrm{s}+1 \mathrm{O})$

3d $\quad \cdot \mathbf{M g}_{(\mathrm{s})}+\mathbf{2 H C l}(\mathrm{aq})==>\mathbf{M g C l}_{2(\mathrm{aq})}+\mathbf{H}_{2(\mathrm{~g})}$

- atom balancing, sum left = right: $(1 \mathrm{Mg})+2 \times(1 \mathrm{H}+1 \mathrm{Cl})=(1 \mathrm{Mg}+2 \mathrm{Cl}$) $)+(2 \mathrm{H}$'s)

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

- $\mathrm{CuCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}==>\mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{CO}_{2(\mathrm{~g})}$
- balancing sum left = sum right: (1 Cu + $1 \mathrm{C}+3 \mathrm{O}$'s $)+(2 \mathrm{H} ' \mathrm{~s}+1 \mathrm{~S}+4 \mathrm{O} \mathrm{s})=(1 \mathrm{Cu}+1 \mathrm{~S}+4 \mathrm{O} \mathrm{s})+$ (2 H's + 1 O) + (1 C + 2 O's)

5d	- $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}==>\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ - atom balancing, sum left $=$ sum right: $(1 \mathrm{C}+4 \mathrm{H} ' \mathrm{~s})+2 \times(2 \mathrm{O}$ s $)=(1 \mathrm{C}+2 \mathrm{O} \mathrm{s})+\mathbf{2 \times (2 H ' s + 1 0)}$

6	$\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})}==>\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$ $+6 \mathrm{O} \text { 's) }+2 \times(2 \mathrm{H} \text { 's + } 10)$

- $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathbf{3 H}_{2} \mathrm{SO}_{4(\mathrm{aq})}==>\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$
 O's) $+3 \times(2 \mathrm{H}$'s + 1 O)
- NOTE 1: \rightleftharpoons means a reversible reaction, it can be made to go the 'other way' if the conditions are changed. Example:
- nitrogen + hydrogen \rightleftharpoons ammonia
$\mathbf{N}_{\mathbf{2 (g)}}+\mathbf{3} \mathbf{H}_{\mathbf{2 (g)}} \rightleftharpoons \mathbf{2 N H}_{\mathbf{3}(\mathrm{g})}$
- balancing: 2 nitrogen's and 6 hydrogen's on both sides of equation

Note 2 on the state symbols $X_{(?)}$ of reactants or products in equations

- (g) means gas, (I) means liquid, (s) means solid
- and (aq) means aqueous solution or dissolved in water
- eg carbon dioxide gas $\mathrm{CO}_{2(\mathrm{q})}$, liquid water $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$, solid sodium chloride 'salt' $\mathrm{NaCl}_{(\mathrm{s})}$
- and copper sulphate solution $\mathrm{CuSO}_{4(\text { aq) }}$

VALENCY - COMBINING POWER - FORMULA DEDUCTION

- (2nd draft) The valency of an atom or group of atoms is its numerical combining power with other atoms or groups of atoms.
- The theory behind this, is all about stable electron structures!
- The combining power or valency is related to the number of outer electrons.
- You need to consult the page on "Bonding" to get the electronic background.
- A group of atoms, which is part of a formula, with a definite composition, is sometimes referred to as a radical.
- In the case of ions, the charge on the ion is its valency or combining power (list below).
- To work out a formula by combining 'A' with ' B ' the rule is:
- number of ' A ' x valency of ' A ' = number of ' B ' x valency of ' B ',
- However it is easier perhaps? to grasp with ionic compound formulae.
- In the electrically balanced stable formula, the total positive ionic charge must equal the total negative ionic charge. Example:
- Aluminium oxide consists of aluminium ions $\mathbf{A l}^{3+}$ and oxide ions $\mathbf{O}^{\mathbf{2 -}}$
- number of $\mathrm{Al}^{3+} \mathrm{x}$ charge on $\mathrm{Al}^{3+}=$ number of $\mathrm{O}^{2-} \mathrm{x}$ charge on O^{2-}
- the simplest numbers are 2 of $\mathrm{Al}^{3+} \times 3=3$ of $\mathrm{O}^{2-} \times 2$ (total $6+$ balances total 6-)
- so the simplest whole number formula for aluminum oxide is $\mathrm{Al}_{2} \mathrm{O}_{3}$

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com

Positive Ions (cations)		Negative Ions (anions)		Examples of ionic combining power of ions (left, valency = numerical charge value)
Name	Formula	Name	Formula	
Hydrogen	H^{+}	Chloride	Cl^{-}	
Sodium	Na^{+}	Bromide	Br^{-}	Examples
Silver	Ag^{+}	Fluoride	F^{-}	Examples
Potasssium	K^{+}	Iodide	I^{-}	
Lithium	Li^{+}	Hydroxide	OH^{-}	- Hydrogen H (1)
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Nitrate	$\mathrm{NO}_{3}{ }^{-}$	- Chlorine Cl and other halogens (1)
Barium	Ba^{2+}	Oxide	O^{2-}	- Oxygen 0 and sulphur S (2)
Calcium	Ca^{2+}	Sulphide	S^{2-}	- Boron B and aluminium Al (3)
Copper(II)	Cu^{2+}	Sulphate	SO_{4}^{2-}	- Nitrogen ($3,4,5$)
Magnesium	Mg^{2+}	Carbonate	CO_{3}^{2-}	- Carbon C and silicon Si (4)
Lead	$\mathrm{Pb}^{\mathbf{2 +}}$	Hydrogenc	onate	- Phosphorus (P 3,5)
Iron(II)	$\mathrm{Fe}^{\mathbf{2 +}}$		HCO_{3}^{-}	
Iron(III)	Fe^{3+}		HCO_{3}	
Aluminium	Al^{3+}			

Examples of working out covalent formulae

'A' (valency)	'B' (valency)	deduced formula
1 of carbon C (4)	balances 4 of hydrogen \mathbf{H} (1)	$1 \times 4=4 \times 1=\mathrm{CH}_{4}$
1 of nitrogen (3)	balances 3 of chlorine $\mathbf{C l}$ (1)	$1 \times 3=3 \times 1=\mathrm{NCl}_{3}$
1 of carbon C (4)	balances 2 of oxygen \mathbf{O} (2)	$1 \times 4=2 \times 2=\mathbf{C O}_{2}$

The diagram on the left illustrates the three covalent examples above for

methane CH_{4}
nitrogen trichloride NCl_{3}

carbon dioxide $\mathrm{CO}_{\mathbf{2}}$

Examples of working out ionic formulae		
' A ' (charge=valency)	'B' (charge=valency)	deduced formula
2 of $\mathrm{Na}^{+}(1)$	balances 1 of $\mathbf{O}^{\mathbf{2 -}} \mathbf{(2)}$	$2 \times 1=1 \times 2=\mathrm{Na}_{2} \mathbf{O}$
1 of $\mathbf{M g}^{\mathbf{2 +}}$ (2)	balances 2 of Cl^{-}(1)	$1 \times 2=2 \times 1=\mathbf{M g C l}_{\mathbf{2}}$
1 of Fe^{3+} (3)	balances 3 of \mathbf{F}^{-}(1)	$1 \times 3=3 \times 1=\mathrm{FeF}_{3}$
2 of Fe^{3+} (3)	balances 3 of $\mathbf{S O}_{4}{ }^{2-}$ (2)	$2 \times 3=3 \times 2=\mathrm{Fe}_{2}\left(\mathbf{S O}_{4}\right)_{3}$

