<u>Turning Effects of Forces</u> <u>O level by Anon</u>

Objects fixed in such a way that they could move about the point are said to experience a turning effect.

The position at which they are fixed so they can move around, such a position is called a pivot.

Pivot can also be a position or point at which an object is placed in such way that object can turn around that position. Example: A position where a bottle opener is placed.

Examples of Turning Effects:

- Opening or closing a door
- Movement of a rotating fan
- Movement of a human arm
- Lifting a weight with a lever

Moments:

It is the product of force and perpendicular distance from the line of action of the force till the pivot. Moment causes a turning effects.

Principal of moments:

For a system to be in equilibrium, the sum of the clockwise moment must be equal to the sum of anti-clockwise moment.

Sample Question:

Find the weight of the computer if the tabletop is in equilibrium:

<u>Answer</u>

Sum of clockwise moment = Sum of anti-clockwise moment $0.25m \times W = 62.5N \times 0.8m$ $W = \underline{62.5N \times 0.8m}$ 0.25m $W = \underline{50}$ 0.25W = 200N Ans.

Determination of the center of mass of a plain lamina:

- 1) First make four holes at the different edges of plain lamina,
- 2) Set up a retort stand with a cork and pin it as shown in the figure
- 3) Tie hole A with a thread on the pin and let the lamina move freely until it stops.
- 4) Attach a plumbline, which is a thread attach to a mass on one end, to the pin.
- 5) Mark the dot on the other end of A corresponding to the plumbline, and join this dot to A with a line.
- 6) Repeat this with B,C and D
- 7) The point of intersection of four lines is the center of mass of the lamina

Stability of an object:

Where A = Base Area And h = Height

Case1:

If $A_1 = A_2$ And $h_1 > h_2$ Then 2 is more stable then 1 Because the center of gravity of 2 is comparatively lower than 1

<u>Case 2:</u>

If $h_1 = h_2$ And $A_1 > A_2$ Then 1 is more stable then 2 Because the base area of 1 is comparatively greater then 2