Turning Effects of Forces
 O level by Anon

Objects fixed in such a way that they could move about the point are said to experience a turning effect.
The position at which they are fixed so they can move around, such a position is called a pivot.
Pivot can also be a position or point at which an object is placed in such way that object can turn around that position. Example: A position where a bottle opener is placed.

Examples of Turning Effects:

- Opening or closing a door
- Movement of a rotating fan
- Movement of a human arm
- Lifting a weight with a lever

Moments:

It is the product of force and perpendicular distance from the line of action of the force till the pivot. Moment causes a turning effects.

Moment $=\boldsymbol{F} \mathbf{x} \boldsymbol{d}$
SI unit of moment $=\mathbf{N m}$
Where $F=$ force in Newton

$$
\mathbf{d}=\text { Perpendicular distance from }
$$ line of action in meter (m).

Principal of moments:

For a system to be in equilibrium, the sum of the clockwise moment must be equal to the sum of anti-clockwise moment.

Sum of anti-clockwise moment $=$ Sum of clockwise moment

$$
\mathbf{W}_{1} \mathbf{d}_{1}=\mathbf{W}_{2} \mathbf{d}_{2}
$$

Sample Question:

Find the weight of the computer if the tabletop is in equilibrium:

[^0]
Determination of the center of mass of a plain lamina:

1) First make four holes at the different edges of plain lamina,
2) Set up a retort stand with a cork and pin it as shown in the figure
3) Tie hole A with a thread on the pin and let the lamina move freely until it stops.
4) Attach a plumbline, which is a thread attach to a mass on one end, to the pin.
5) Mark the dot on the other end of A corresponding to the plumbline, and join this dot to A with a line.
6) Repeat this with B,C and D
7) The point of intersection of four lines is the center of mass of the lamina

Stability of an object:

Where A= Base Area
And $h=$ Height

Case 1:

(1)

(2)

If $\quad \mathbf{A}_{1}=\mathbf{A}_{2}$
And $h_{1}>h_{2}$
Then 2 is more stable then 1
Because the center of gravity of 2 is comparatively lower than 1

Case 2:

If $h_{1}=h_{2}$
And $A_{1}>A_{2}$
Then 1 is more stable then 2
Because the base area of $\mathbf{1}$ is comparatively greater then 2

[^0]: Answer
 Sum of clockwise moment = Sum of anti-clockwise moment $0.25 \mathrm{~m} \times \mathrm{W}=62.5 \mathrm{~N} \times 0.8 \mathrm{~m}$
 $\mathrm{W}=\underline{62.5 \mathrm{~N} \times 0.8 \mathrm{~m}}$
 0.25m
 $W=\frac{50}{0.25}$

 W $=\mathbf{2 0 0 N}$ Ans.

