AS Electricity #### **Potential dividers** #### Name & Set 1 In the circuit shown below the p.d. of the battery is 12 V. Assume that the battery has no internal resistance If R_1 is 50Ω and R_2 is 250Ω (i) what would voltmeter V₁ read? (ii) what would voltmeter V₂ read? [1] (iii) what is the voltage at A? [1] (iv) what is the voltage at B? [1] (v) What is the voltage at C? [1] (vi) Plot a graph of the p.d. across each part of the circuit from the positive terminal of the cell (+) to the negative terminal of the cell (-).BB on the graphs represents the wire between $R_1 \& R_2$ is. [3] In the circuit shown below the p.d. of the battery is 36 V. Assume that the battery has no 2 internal resistance If R_1 is $10 K\Omega$ and R_2 is $80 K\Omega$ (i) What would voltmeter V₁ read? [3] (ii) What would voltmeter V_2 read? __ [1] (iii) what is the voltage at A? _ [1] (iv) what is the voltage at B? _ [1] (v) What is the voltage at C? __ (vi) What current is drawn from the battery? _ [3] (vii) Plot a graph of the pd around the circuit. [3] https://www.youtube.com/c/MegaLecture +92 336 7801123 In the circuit shown below the p.d. of the battery is 6 V. Assume that the battery has no internal resistance If R_1 is $250 K\Omega$ and R_2 is $500 K\Omega\text{,}$ (i) What would voltmeter V₁ read? (ii) What would voltmeter V2 read? (iii) What is the voltage at A? _ (iv) What is the voltage at B? _ (v) What is the voltage at C? _ (vi) What current is drawn from the battery? In the circuit shown below the p.d. of the battery is 18 V. Assume that the battery has no internal resistance If R_1 is $600 K\Omega$ and R_2 is $300 K\Omega$ (i) What would voltmeter V_1 read? (ii) What would voltmeter V₂ read? (iii) What is the voltage at A? _ (iv) What is the voltage at B? __ (v) What is the voltage at C? _ (vi) What current is drawn from the battery? In the circuit shown below the p.d. of the battery is 15 V. Assume that the battery has no internal resistance | is a variable resistor that varies from 052 to 50052and R_2 is 10052 | | |---|-----| | (i) What would voltmeter V_1 read when R_1 is set to its lowest resistance? | | | | [1] | | (ii) What would voltmeter V ₂ read when R ₁ is set to its lowest resistance?? | | | | | | | | | | [3] | | (iii) What would voltmeter V_1 read when R_1 is set to its highest resistance? | | | | | | | [3] | | (iv) What would voltmeter V_2 read when R_1 is set to its highest resistance? | [3] | | | | | | [3] | | (v) What should the resistance of R_1 be if voltmeter V_1 read 6V? | [3] | | | | | | [3] | | (iv) What should the resistance of R_1 be if voltmeter V_2 read 10V? | [5] | | | | | | [3] | AS Electricity 5 In the circuit shown below the p.d. of the battery is 10 V. Assume that the battery has no internal resistance R₁ is an LDR that varies from 0Ω in full light to 1000Ω in the dark and R₂ is a fixed resistor of 100Ω (i) What would voltmeter V₁ read when the LDR is covered over so no light reaches it? [3] (ii) What would voltmeter V₂ read when the LDR is covered over so no light reaches it? [1] (iii) What would voltmeter V₁ read when the LDR is fully illuminated? [1] (iv) What would voltmeter V₂ read when LDR is fully illuminated? [1] (ii) What should the resistance of R₁ be if voltmeter V₁ read 2.5V? AS Electricity The circuit diagram below shows a type of electric thermometer. A thermistor, R_T , is used as a temperature probe. A high resistance voltmeter is used to indicate the temperature. Your task is to draw up a calibration curve for the voltmeter so that it can be read directly as a thermometer. Data for the resistance of the thermistor, R_T , as a function of its temperature is given in the table. The value of the fixed resistor R_R is $1k\Omega$. | Temp
(°C) | R_T $(k\Omega)$ | |--------------|-------------------| | 10 | 2.1 | | 20 | 1.4 | | 30 | 1.0 | | 40 | 0.7 | | 50 | 0.5 | | 60 | 0.3 | (a) Plot a graph of temperature against resistance for the thermistor over the range 0 °C to 100 °C. (Use *Graphical Analysis* or *Excel* if you wish and submit the print out.) [3] AS Electricity | (0) | ose the graph and a calculation to determine what the voluneter will read when the thermis | , LOI | |-----|--|-------| | | s at 30°C. | | | | 3 40 30 - C. | | | | | | | | | | | | | | _ [2] (c) Draw up a table of the p.d. across the resistance R_R corresponding to different thermistor temperatures. (Use *Graphical Analysis* or *Excel* if you wish and submit the print out.) _____[4] | Temperature
/°C | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |--------------------|---|----|----|----|----|----|----|----|----|----|-----| | p.d. / Volts | | | | | | | | | | | | (d) Draw a graph of voltmeter reading (on y axis) against temperature of thermistor (on the x axis). (e) What does the voltmeter read at 0 °C ______ 70 °C _____ 100 °C? _____ [3] (f) Between what temperatures is the thermometer scale linear? ______[1]