Physics Equation List: Form 4Introduction to Physics

Relative Deviation

Relative Deviation = $\frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%$

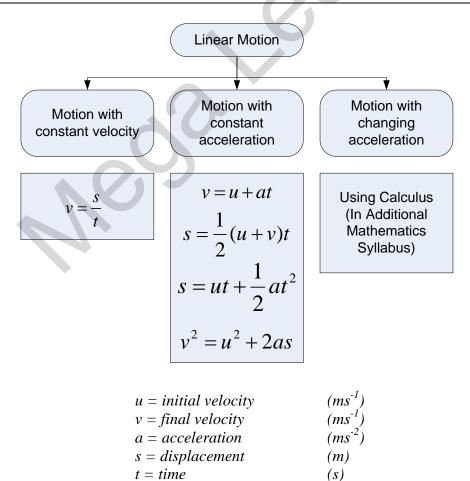
Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1 000 000 000 000	10 ¹²	Т
Giga	1 000 000 000	10^{9}	G
Mega	1 000 000	10^{6}	M
Kilo	1 000	10^3	k
deci	0.1	10-1	d
centi	0.01	10-2	c
milli	0.001	10-3	m
micro	0.000 001	10^{-6}	μ
nano	0.000 000 001	10 ⁻⁹	n
pico	0.000 000 000 001	10 ⁻¹²	p

Units for Area and Volume

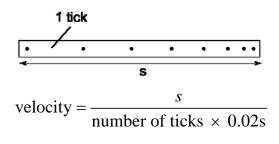
Force and Motion

Average Speed

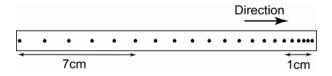

Average Speed =
$$\frac{\text{Total Distance}}{\text{Total Time}}$$

Velocity

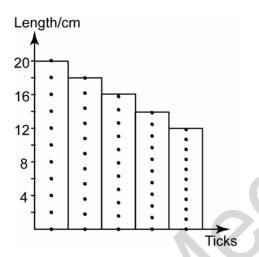
$$V = \frac{S}{t}$$
 $v = velocity \qquad (ms^{-1})$
 $s = displacement \qquad (m)$
 $t = time \qquad (s)$


Acceleration

Equation of Linear Motion

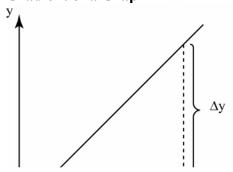

Ticker Tape

Finding Velocity:



$$1 \text{ tick} = 0.02 \text{s}$$

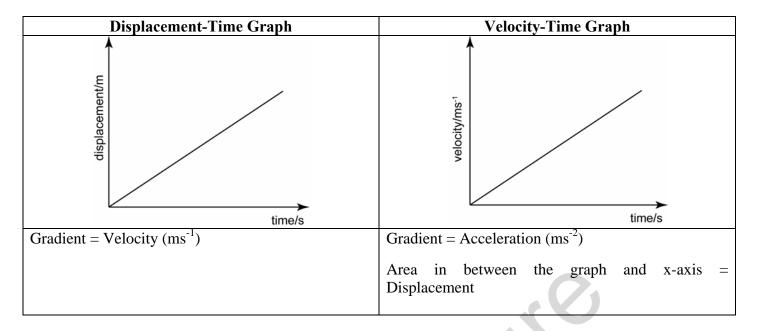
Finding Acceleration:


$$a = \frac{v - u}{t}$$

a = acceleration (ms^{-2}) $v = final \ velocity$ (ms^{-1}) $u = initial \ velocity$ (ms^{-1}) $t = time \ for \ the \ velocity \ change$ (s)

Graph of Motion

Gradient of a Graph



The gradient 'm' of a line segment between two points and is defined as follows:

Gradient,
$$m = \frac{\text{Change in y coordinate, } \Delta y}{\text{Change in x coordinate, } \Delta x}$$

01

$$m = \frac{\Delta y}{\Delta x}$$

Momentum

$$p = m \times v$$
 $p = momentum (kg ms-1) $m = mass (kg)$
 $v = velocity (ms-1)$$

Principle of Conservation of Momentum

$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$

$m_1 = mass of object 1$	(kg)
$m_2 = mass \ of \ object \ 2$	(kg)
u_1 = initial velocity of object 1	(ms^{-1})
u_2 = initial velocity of object 2	(ms^{-1})
$v_1 = final \ velocity \ of \ object \ 1$	(ms^{-1})
v_2 = final velocity of object 2	(ms^{-1})

Newton's Law of Motion Newton's First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Newton's Second Law

$$F\alpha \frac{mv - mu}{t}$$

$$F = ma$$

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

$$F = Net Force$$
 $(N or kgms^{-2})$
 $m = mass$ (kg)
 $a = acceleration$ (ms^{-2})

Implication

When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

Impulse =
$$Ft$$

$$F = force t = time$$

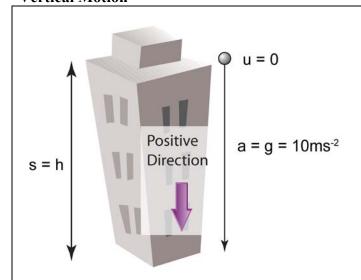
$$f = force t = time$$

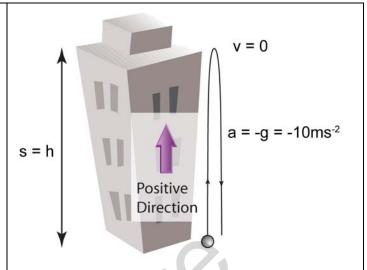
$$m = mass v = final velocity v = final velocity v = initial velocity v = final velocity$$

Impulsive Force

Gravitational Field Strength

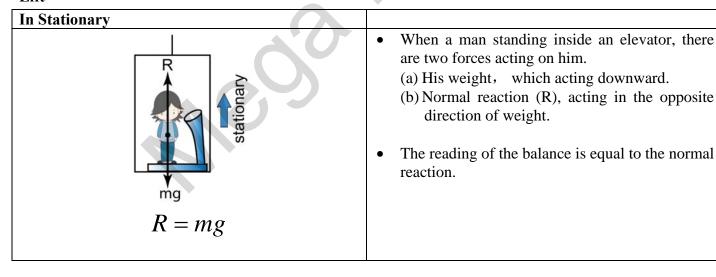
$$g = \frac{F}{m}$$

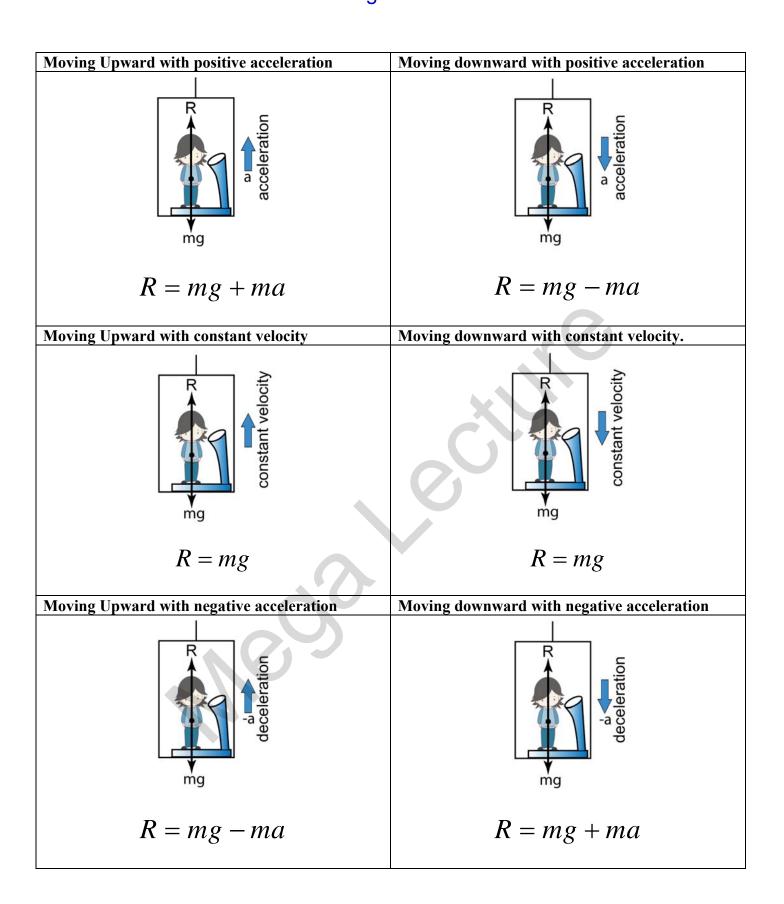

$$g = gravitational field strength (N kg-1) (N or kgms-2)
$$m = mass$$


$$(kg)$$$$

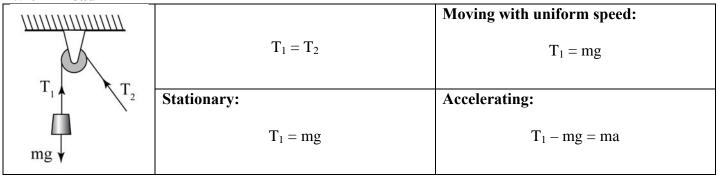
Weight

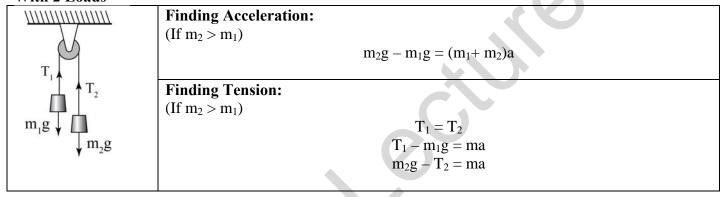
$$W = Weight$$
 $(N \text{ or } kgms^{-2})$
 $m = mass$ (kg)
 $g = gravitational \text{ field strength/gravitational acceleration}$ (ms^{-2})


Vertical Motion



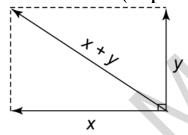
- If an object is release from a high position:
- The initial velocity, u = 0.
- The acceleration of the object = gravitational acceleration = 10ms⁻²(or 9.81 ms⁻²).
- The displacement of the object when it reach the ground = the height of the original position, h.
- If an object is launched vertically upward:
- The velocity at the maximum height, v = 0.
- The deceleration of the object = -gravitational acceleration = -10ms⁻²(or -9.81 ms⁻²).
- The displacement of the object when it reach the ground = the height of the original position, h.


Lift



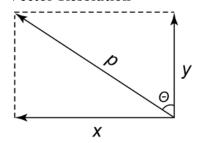
Smooth Pulley

With 1 Load

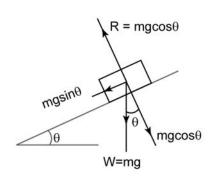


With 2 Loads

Vector


Vector Addition (Perpendicular Vector)

Magnitude =
$$\sqrt{x^2 + y^2}$$


Direction =
$$\tan^{-1} \frac{|y|}{|x|}$$

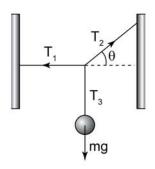
Vector Resolution

$$|x| = |p| \sin \theta$$

 $|y| = |p| \cos \theta$

Inclined Plane

Component parallel to the plane

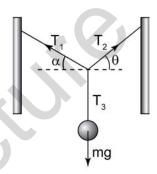

 $= mgsin \theta$

Component perpendicular to the plane

 $= mgcos\theta$

(°)

Forces In Equilibrium

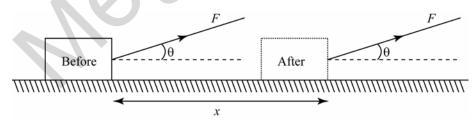


$$T_3 = mg$$

$$T_2 \sin \theta = mg$$

$$T_2 \cos \theta = T_1$$

$$T_1 \tan \theta = mg$$



$$T_3 = mg$$

$$T_2 \cos \theta = T_1 \cos \alpha$$

$$T_2 \sin \theta + T_1 \sin \alpha = mg$$

Work Done

$$W = Fx \cos \theta$$

W = Work DoneF = Force

(J or Nm) $(N or kgms^{-2})$

x = displacement

 θ = angle between the force and the direction of motion

When the force and motion are in the same direction.

Work Done

(J or Nm)

Force

 $(N or kgms^{-2})$

lisplacement (*m*)

Energy

Kinetic Energy

$$E_K = \frac{1}{2}mv^2 \qquad E_K = Kinetic Energy \qquad (J)$$

$$m = mass \qquad (kg)$$

$$v = velocity \qquad (ms^{-1})$$

Gravitational Potential Energy

$$E_P = mgh$$

$$E_P = Potential \ Energy \qquad (J)$$
 $m = mass \qquad (kg)$
 $g = gravitational \ acceleration \qquad (ms^{-2})$
 $h = height \qquad (m)$

Elastic Potential Energy

$$E_{P} = \frac{1}{2}kx^{2}$$

$$E_{P} = Potential Energy$$

$$k = spring constant$$

$$x = extension of spring$$

$$(N m^{-1})$$

$$E_{P} = \frac{1}{2}Fx$$

$$F = Force$$

$$(N)$$

Power and Efficiency

Power

$$P = \frac{W}{t}$$

$$P = power$$

$$W = work done$$

$$E = energy change$$

$$t = time$$

$$(W \text{ or } Js^{-1})$$

$$(J \text{ or } Nm)$$

$$(J \text{ or } Nm)$$

$$(s)$$

Efficiency

$$Efficiency = \frac{Useful Energy}{Energy} \times 100\%$$

Or

$$Efficiency = \frac{Power\ Output}{Power\ Input} \times 100\%$$

Hooke's Law

Force and Pressure

Density

$$\rho = \frac{m}{V}$$

$\rho = density$	$(kg m^{-3})$
m = mass	(kg)
V = volume	(m^3)

Pressure

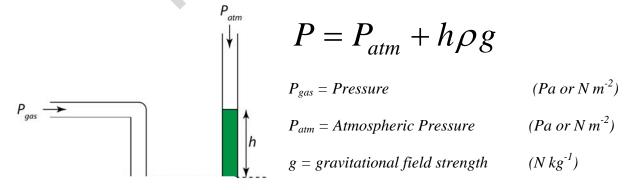
$$P = \frac{F}{A}$$

$$P = Pressure \qquad (Pa \text{ or } N \text{ m}^{-2})$$

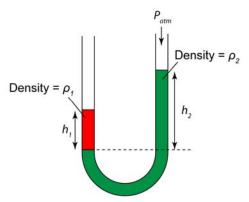
$$A = Area \text{ of the surface} \qquad (m^2)$$

$$F = Force \text{ acting normally to the surface} \qquad (N \text{ or } kgms^{-2})$$

Liquid Pressure

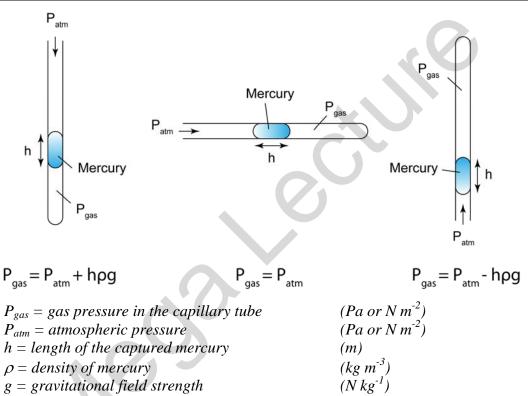

$$P = h \rho g$$
 $h = depth$ (m) $\rho = density$ $(kg m^{-3})$ $g = gravitational Field Strength $(N kg^{-1})$$

Pressure in Liquid


$$P = P_{atm} + h \rho g$$
 $h = depth$ (m) $\rho = density$ $(kg m^{-3})$ $g = gravitational Field Strength$ $(N kg^{-1})$ $P_{atm} = atmospheric Pressure$ $(Pa or N m^{-2})$

Gas Pressure

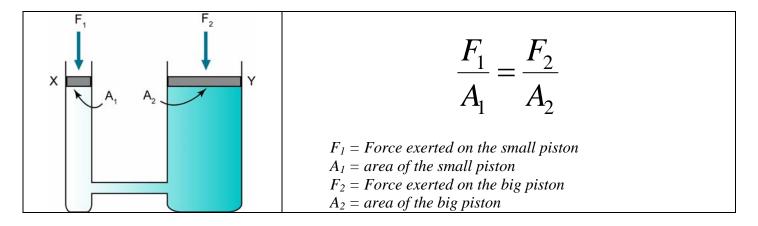
Manometer



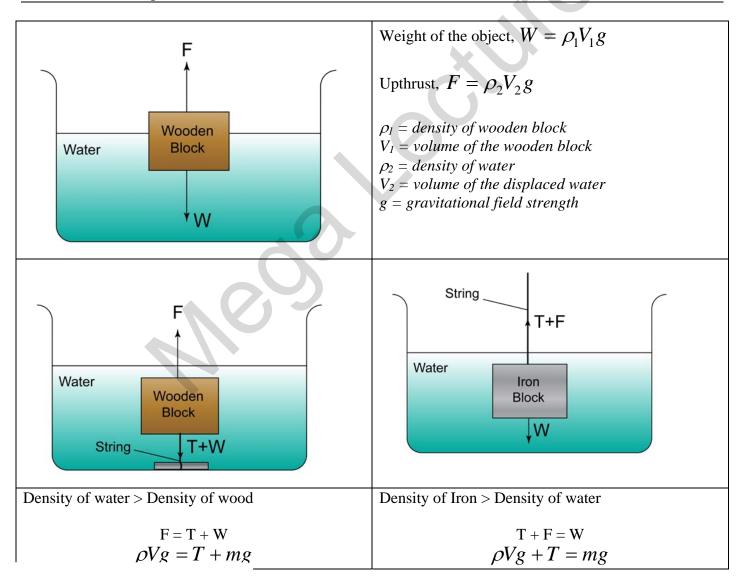
U=tube

$$h_1 \rho_1 = h_2 \rho_2$$

Pressure in a Capillary Tube



Barometer


P _a	Pressure in unit cmHg	Pressure in unit Pa
26cm P _b 26cm P _c 50cm	$P_a = 0$	$P_a = 0$
	$P_b = 26$	$P_b = 0.26 \times 13600 \times 10$
	$P_c = 76$	$P_c = 0.76 \times 13600 \times 10$
	$P_d = 76$	$P_d = 0.76 \times 13600 \times 10$
	ъ – 76	$P_e = 0.76 \times 13600 \times 10$
	84	$P_f = 0.84 \times 13600 \times 10$

(Density of mercury = 13600kgm⁻³)

Pascal's Principle

Archimedes Principle

Heat

Heat Change

$$Q = mc\theta$$

m = mass	(kg)
c = specific heat capacity	$(J kg^{-1} {}^{o}C^{-1})$
θ = temperature change	$(^{o})$

Electric Heater	Mixing 2 Liquid
Γ of $F = Dt$	Heat Gain by Liquid 1 = Heat Loss by Liquid 2
Energy Supply, $E = Pt$	
Energy Receive, $Q = mc\theta$	$m_1 c_1 \theta_1 = m_2 c_2 \theta_2$
Energy Supply, E = Energy Receive, Q	$m_1 = mass \ of \ liquid \ 1$
	c_1 = specific heat capacity of liquid 1
$Pt = mc\theta$	$ heta_l = temperature\ change\ of\ liquid\ 1$
$E = electrical\ Energy\ (J\ or\ Nm)$	$m_2 = mass \ of \ liquid \ 2$
P = Power of the electric heater (W)	c_2 = specific heat capacity of liquid 2
t = time (in second) (s)	θ_2 = temperature change of liquid 2
Q = Heat Change (J or Nm)	
m = mass (kg)	
$c = specific heat capacity (J kg^{-1} {}^{o}C^{-1})$	
θ = temperature change (°)	

Specific Latent Heat

$$Q = mL$$

$$Q = Heat \ Change \qquad \qquad (J \ or \ Nm)$$

 $m = mass \qquad \qquad (kg)$
 $L = specific \ latent \ heat \qquad (J \ kg^{-1})$

Boyle's Law

$$P_1V_1 = P_2V_2$$

(Requirement: Temperature in constant)

Pressure Law

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

(Requirement: Pressure is constant)

Universal Gas Law

$$\frac{T_1V_1}{T_1} = \frac{T_2V_2}{T_2}$$

$$P = Pressure$$

$$V = Volume$$

$$T = Temperature$$

$$(Pa \ or \ cmHg \dots)$$

$$(m^3 \ or \ cm^3)$$

$$(MUST \ be \ in \ K(Kelvin))$$

Light

Refractive Index

Snell's Law

Real depth/Apparent Depth

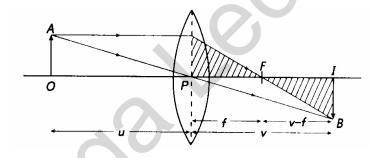
Kear depth/Apparent Depth	
	$n = \frac{\sin i}{\sin r}$ $n = refractive index \qquad (No unit)$ $i = angle of incident \qquad (°)$ $r = angle of reflection \qquad (°)$
air water apparent depth image of point point	$n = \frac{D}{d}$ $n = refractive \ index$ (No unit) $D = real \ depth$ (m or cm) $d = apparent \ depth$ (m or cm)
Speed of light	Total Internal Reflection
$n = \frac{c}{v}$ $n = refractive index \qquad (No unit)$ $c = speed of light in vacuum \qquad (ms-1)$ $v = speed of light in a medium (like water,$	$n = \frac{1}{\sin c}$ $n = refractive \ index \qquad (No \ unit)$ $c = critical \ angle \qquad (°)$

Lens

Power

$$P = \frac{1}{f}$$

$$P = Power \qquad (D(Diopter))$$


$$f = focal \ length \qquad (m)$$

Linear Magnification

$$m = \frac{h_i}{h_o} \qquad m = \frac{v}{u} \qquad \frac{h_i}{h_o} = \frac{v}{u}$$

m = linear magnification (No unit) u = distance of object (m or cm...) v = distance of image (m or cm...) $h_i = heigth of image$ (m or cm...) $h_o = heigth of object$ (m or cm...)

Lens Equation

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

Conventional symbol

	positive neg	ative
и	Real object	Virtual object
v	Real image	Virtual image
f	Convex lens	Concave lens

Astronomical Telescope

Magnification,

$$m = \frac{P_e}{P_o} \qquad m = \frac{f_o}{f_e}$$

m = linear magnification

 $P_e = Power of the eyepiece$

 P_o = Power of the objective lens f_e = focal length of the eyepiece

 $f_e = focal tength of the eyeptece$

 $f_o = focal\ length\ of\ the\ objective\ lens$

Distance between eye lens and objective lens

$$d = f_o + f_e$$

d = Distance between eye lens and objective lens

 f_e = focal length of the eyepiece

 f_o = focal length of the objective lens

Compound Microscope

Magnification

$$\begin{split} m &= m_1 \times m_2 \\ &= \frac{\text{Height of first image , } I_1}{\text{Height of object}} \times \frac{\text{Height of second image, } I_2}{\text{Height of second image, } I_2} \\ &= \frac{\text{Height of second image, } I_2}{\text{Height of object, } I_1} \end{split}$$

m = Magnification of the microscope

 $m_1 = Linear magnification of the object lens$

 m_2 = Linear magnification of the eyepiece

Distance in between the two lens

$$d > f_o + f_e$$

d = Distance between eye lens and objective lens

 f_e = focal length of the eyepiece

 f_o = focal length of the objective lens