Chapter 2

Atoms, molecules and Stoichiometry

Counting atoms and molecules

There are two important definitions to remember in this chapter:

- Relative Atomic Mass, Ar, or an element:
- Average mass of one atom relative to the mass of one atom of C^{12} which is considered to be 12 (atomic mass unit A.M.U)
- Relative Isotopic Mass of an Isotope of an element:
- The mass of one atom of the isotope relative to that of one atom of C^{12}.

To calculate the Ar of an element we have to consider all the isotopes of the element and their abundance.

$$
A r=(\text { isotopic mass } \times \text { abundance } \%)
$$

Example, to find the relative atomic mass of chlorine:
Isotopes:

- Chlorine-35, abundance $=75.5 \%$
- Chlorine-37, abundance $=24.5 \%$

Therefore:

$$
\begin{gathered}
A r=\left(35 \times \frac{75.5}{100}+37 \times \frac{24.5}{100}\right) \\
A r=35.5
\end{gathered}
$$

The mass of different molecules are compared in a similar fashion. The relative formula mass (Mr) of a compound, is the mass of a molecule of the compound relative to the mass of an atom of carbon-12.

To find the relative Mr of a compound, we add up all the Ar's of the elements in the compound. Example for CH_{4} :

$$
\begin{gathered}
M r=12+(4 \times 1) \\
M r=16
\end{gathered}
$$

Determination of Ar from mass spectra

Ar is determined using an instrument called the mass spectrometer. The instrument is shown below:

Knowledge of the working of the mass spectrometer is not required by CIE.
The results of the mass spectrometer would be shown on a computer screen, as a chart of abundance against mass. For example, for zirconium:

Counting chemical substances in bulk

The mole and Avogadro's constant

Similarly,

- A Mole of molecules:
- It is a quantity of the substance contains Avogadro's number of molecules.
(e.g. : a mole of ions . a electrons)

In terms of mass,

A mole of atoms is a quantity in grams equal to the relative atomic mass.
For example, 1 mol of S atoms weighs 32 grams.
Relative Molecular Mass (Mr) is the sum of atomic masses of all atoms in the molecule.

Examples are found in the book.

The empirical (simplest) formula \& molecular formula:

- The Empirical Formula:

Of a compound shows the simplest whole-number ratio of the elements in the compound

- The Molecular Formula:

Of a compound shows the real number of each element in a molecule of a compound.

Example 1: SAQ 2.10 pg21

Q: Copper oxide has the following composition by mass: $\mathrm{Cu}=0.635 \mathrm{~g} ; \mathrm{O}=0.08 \mathrm{~g}$.
Calculate empirical formula of the oxide:
ANS:
$\mathrm{Ar}(\mathrm{Cu}) \quad=63.5$
$\operatorname{Ar}(0)=16$
Cu
ㅇ

$$
\begin{array}{ll}
\frac{0.635}{63.5} & \frac{0.08}{16}
\end{array}
$$

$\frac{0.01}{0.005}$

2

1

$$
\mathrm{Cu}_{2} \mathrm{O}
$$

Combustion analysis

The composition by mass of organic compounds can be found by combustion analysis. This involves the complete combustion in oxygen of a sample of a known mass.

In combustion analysis, all the carbon is converted to carbon dioxide and all the hydrogen into water.

These produced are carefully collected and weighed. Calculation gives the mass of carbon and hydrogen present.

If oxygen is also present, its mass is found by subtraction (elimination). Other elements require other methods.

- mass of C in a sample $=$ mass of $\mathrm{CO}_{2} \times \frac{12}{44}$
- mass of H in a sample $=$ mass of $\mathrm{H}_{2} \mathrm{O} \times \frac{2}{18}$

Example:
SAQ 2.11 pg22
Q: On complete combustion of 0.4 g of a hydrocarbon (only H and C), 1.257 g of CO_{2} and $0.514 \mathrm{~g}^{\text {of }} \mathrm{H}_{2} \mathrm{O}$ were produced.
a) Find the Empirical formula of the hydrocarbon

ANS: Find C: $1.257 \times \frac{12}{44}$
Find $\mathrm{H}: 0.514 \times \frac{2}{18}$
$C=0.3428 \mathrm{~g}$
$\frac{0.3428}{12}$
$H=0.0571 \mathrm{~g}$
$\frac{0.0571}{1}$
$=0.02856$
$=1$
$=0.0571$
$=2$

CH_{2}

b) If relative molecular mass of the hydrocarbon is 84 , what is its molecular formula

ANS: mass of $\mathrm{CH}_{2}=14$

$$
\frac{84}{14}=6
$$

So, the molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12}$

Calculations involving reacting masses:

$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

- molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}=(2 \times 56)+(3 \times 16)=160 \mathrm{~g} / \mathrm{mol}$
- one mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ gives 2 moles of Fe .

160 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ gives $(2 \times 56)=112 \mathrm{~g}$ of iron
1000 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ gives $112 \times \frac{1000}{160}=700 \mathrm{~g}$ of iron
Example 1: SAQ 2.8 pg20
QUE: Calculate the mass of iron produced from 1000 tons of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. How many tons of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ would be needed to produce 1 ton of iron? If the iron ore contains 12% of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, how many tons of ore are needed to produce 1 ton of iron?

ANS:

1) $1,000,000,000 \mathrm{~g}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ gives $112 \times \frac{1000000000}{160}=700,000,000 \mathrm{~g}=700$ tons
2) $112 \times \frac{x}{160}=1,000,000, \quad x=1.43$ tons
3) $1.43 \times \frac{100}{12}=11.9$ tons

Calculations involving concentration:

Concentration is how much solute is available in a specific volume of solution.

- Concentration by Mass:
- how many grams of solute in $1 \mathrm{dm}^{3}$ solution. (unit is $\mathrm{g} / \mathrm{dm}^{3}$) (m / v)
- Concentration by Moles (Molar concentration):
- How many moles of solute in $1 \mathrm{dm}^{3}$ solution (unit is moles $/ \mathrm{dm}^{3}$ (n / V)

Example 1:

QUE: What amount of NaOH is present in $24.0 \mathrm{~cm}^{3}$ of an aqueous $0.010 \mathrm{~mol} / \mathrm{dm}^{3}$?
ANS:
Convert the volume to dm^{3}
$1 \mathrm{dm}^{3}=10 \times 10 \times 10 \mathrm{~cm}^{3}=1000 \mathrm{~cm}^{3}$
$24.0 \mathrm{~cm}^{3}=\frac{24.0}{1000} \mathrm{dm}^{3}$
Amount of NaOH in $24.0 \mathrm{~cm}^{3}=\frac{24.0}{1000} \times 0.010 \mathrm{~mol}$

$$
=2.40 \times 10^{-4} \mathrm{~mol}
$$

Calculations involving gas volumes:

Equal volumes of different gases contain the same number of molecules under same conditions of temperature and pressure, and this number is Avogadro's Number.

The opposite is also true, equal numbers of molecules of different gases, under same conditions of temperature and pressure occupy the same volume.

At room temperature and pressure (r.t.p), one mole of any gas occupies approximately $24 \mathrm{dm}^{3}$ (at s.t.p, this is $22.5 \mathrm{dm}^{3}$).Reacting volumes of gases under same conditions of temperature and pressure can be used to determine the formula and stoichiometry of reaction.

Example 1:
QUE: $10 \mathrm{~cm}^{3}$ of hydrocarbon burned completely in $50 \mathrm{~cm}^{3}$ of oxygen produced $30 \mathrm{~cm}^{3}$ of CO_{2} at r.t.p. Determine the formula of hydrocarbon and write a balanced equation of the reaction.

ANS:

$$
\mathrm{HC}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Volume: $\quad 10 \mathrm{~cm}^{3} / 10 \quad 50 \mathrm{~cm}^{3} / 10 \quad 30 \mathrm{~cm}^{3} / 10 \quad$ -
Gas Volume Ratio: $1 \quad$: $5 \quad$: 3
Gas Mole Ratio: 1 : 5 : 3
3 moles of C come from 3 moles of O_{2} react with 3 moles of CO_{2}
$5-3=2$ moles of O_{2} which react with hydrogen

$$
4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}
$$

2 moles of O_{2} react with 8 moles of H atoms, which gives $\mathrm{C}_{3} \mathrm{H}_{8}$

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}
$$

Example 2: SAQ 2.21 pg27
QUE: $20 \mathrm{~cm}^{3}$ of gaseous hydrocarbon ' γ ' burned completely in $60 \mathrm{~cm}^{3}$ of oxygen to produce water and $40 \mathrm{~cm}^{3}$ of CO_{2} (@ r.t.p)
a) What is formula of hydrocarbon ' γ '
b) Write a balanced equation for the reaction.

ANS:

$$
\mathrm{HC}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Volume: $\quad 20 \mathrm{~cm}^{3} \quad 60 \mathrm{~cm}^{3} \quad 40 \mathrm{~cm}^{3}$--
Gas volume ratio: 1 : 3 : 2
Gas mole ratio: 1 : 3 : 2
$4 \mathrm{C}+4 \mathrm{O}_{2} \rightarrow 4$ moles of CO_{2}
6-4= 2 moles to react with H_{2}
$8 \mathrm{H}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{4} \mathrm{H}_{8} / 2$ gives $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Summary:

Relative Atomic Mass, Ar, or an element is the average mass of one atom relative to the mass of one atom of C^{12} which is considered to be 12 (atomic mass unit A.M.U).

Relative Isotopic Mass of an Isotope of an element the mass of one atom of the isotope relative to that of one atom of C^{12}.

$$
\text { Ar }=(\text { isotopic mass } \times \text { abundance } \%)
$$

$$
\text { Number of moles }=\frac{M a s s}{M r}
$$

Relative Molecular Mass (Mr) is the sum of atomic masses of all atoms in the molecule

The Empirical Formula of a compound shows the simplest whole-number ratio of the elements in the compound

The Molecular Formula of a compound shows the real number of each element in a molecule of a compound.

$$
\begin{aligned}
& \text { Mass of element }=\frac{\text { Ar of element }}{\text { Mrof compound }} \times \text { Mass of compound } \\
& \text { Moles }=\text { Volume in } \mathrm{dm}^{3} \times \text { Concentration } \\
& \text { Concentration in } \text { gdm }^{-3}=\text { Concentration in moldm }
\end{aligned}
$$

