

## Chapter 7 Notes

Work, Energy \&
Power

## Energy

- Definition: The capacity to do work.
- Different types of energy
- Kinetic Energy
- Gravitational Potential Energy
- Elastic Potential Energy
- Sound, Thermal, Electrical, Light Energy


## Conservation of Energy

- Definition: Energy cannot be created or destroyed, but it can be converted from one form into another or transferred from one body to another
- The total energy of a closed system remains constant
- Energy gained $=$ Energy lost (eg. loss in $E_{[ }=$gain in $E_{k}$ )
- Swinging Object
- Start: Max. Ep, Zero $E_{k}$
- Midpoint: Zero $E_{p}$, Max. $E_{k}$
- End: Max. Ep, Zero Ek



## www.megalecture.com

## Chapter 7: Work, Energy \& Power

## Kinetic Energy

- Energy related to movement of mass

$$
E_{k}=\frac{1}{2} m v^{2}
$$

- Where $E_{k}=$ kinetic energy (j), m = mass (kg), v = velocity (v)


## Gravitational Potential Energy

- Energy related to position of mass is gravitational potential energy

$$
E_{\boldsymbol{p}}=\boldsymbol{m g h}
$$

- $\mathrm{E}=$ gravitational energy ( j ), $\mathrm{m}=$ mass (kg), $\mathrm{h}=$ height ( m ), $\mathrm{g}=$ gravitational constant


## Electrical Energy

- Fluorescent Bulb: Electrical energy $\rightarrow$ More light than thermal energy
- Incandescent Bulb: Electrical energy $\rightarrow$ More thermal than light energy
- Saving water conserves energy because less electrical energy of the pump is needed to be converted into kinetic energy of water
- Air Conditioner: Electrical energy $\rightarrow$ Net thermal energy


## Mechanical Energy

- Sum of kinetic and potential energy in an object used to do work
- Mechanical energy of an object is constant if its weight is only force acting on it
- Initial ME $=$ Final ME (e.g. Final $E_{k}=$ Initial $E_{p}+E_{k}$ )


## Chapter 7: Work, Energy \& Power

## Law of Conservation of Energy

- By the law of conservation of energy, Gain in $E_{k}=$ Loss in $E_{p} /$ Max. $E_{k}=$ Max. $E_{p}$


## Example 1:

Account for the failure of the ball to reach the original height.

- Some of the energy has been converted to thermal and sound energy when the ball contacted with the floor, so the KE after the ball rebounds is smaller than before it hits the ground
- Since the ball's KE is smaller, its final GPE will also be smaller


## Work Done

## Work Done $=\boldsymbol{F} \times s$

- Where $\mathrm{F}=$ force ( N ) , s = displacement (m), Work Done units: joules
- Calculating energy in joules: Power in watts (W) and time in seconds (s)



## Chapter 7: Work, Energy \& Power

## Example 1:

An electric kettle has 2.5 kW . How much energy is transferred in 3min?
Energy $=(2.5 \times 1000)(3 \times \underline{60})=450,000 \mathrm{~J}$

## Example 2:

What is the distance moved by a 6 kg box gliding at $2 \mathrm{~m} \mathrm{~s}^{-1}$ when friction is 3 N ?

- Initial $K E=1 / 2 \times 4 \times 6=12 \mathrm{~J}$; Final $\mathrm{KE}=0 \mathrm{~J}$
- $1 / 2 m v^{2}=F \times s$
- Distance $=12 / 3=4 \mathrm{~m}$


## Example 3:

A man exerts a force, $F$, to push a 2 kg box 5 m up an 8 m long slope at a constant speed. Friction is $3 N$. Calculate force $F$.

- Final E = Initial E + Net work done
- $\quad \mathrm{mgh}=\mathrm{F}(8)-(3)(8) \mathrm{J}$
- $2 \times 10 \times 5=F(8)-24 \mathrm{~J}$
- $8 \mathrm{~F}=124 \mathrm{~J}$
- $F=15.5 \mathrm{~J}$


## Chapter 7: Work, Energy \& Power

## Power

- Definition: The rate of doing work

$$
\begin{gathered}
\text { Power }=\frac{\text { Work }}{\text { Time }} \text { or } \frac{\text { Force } \times \text { Distance }}{\text { Time }} \\
\text { Average Power }=\frac{\text { Total work done by force }}{\text { Total time }}
\end{gathered}
$$

- Unit: Watt (W) / Joules per second (J sis


## Example 1:

A man is doing push-ups. He applies a force of 300 N as he pushes up 0.5 m . He does 10 push-ups in 30s. What is his average power output in 30s?

- Power $=W / \mathrm{t}=(\mathrm{F} \times \mathrm{s}) / \mathrm{t}=(300 \times 0.5 \times 10) / 30=50 \mathrm{~W}$


## Example 2:

What information is not required to find useful work done of man going up stairs?

- Horizontal distance NOT needed! [finds work done against friction]
- Vertical height is needed as it is same direction as the weight (e.g. work done by person weighing 600N, upstairs with 3 m vertical height $=600$ x $3=1800 \mathrm{~J}$ )


## Chapter 7: Work, Energy \& Power

## Example 3:

A man of 80 kg jumps 39 km above earth's surface and parachute opens 3 km above. During freefall, gravitational field strength increased from $9.7 \mathrm{~N} \mathrm{~kg}^{-1}$ to $9.8 \mathrm{~N} \mathrm{~kg}^{-1}$. Estimate the loss in $E_{p}$ during freefall.

- Initial $E_{p} 36 \mathrm{~km}$ above

$$
\begin{aligned}
& =m g h=(80)(9.7)(36) \\
& =27,936 \mathbf{k J}
\end{aligned}
$$

- Final $E_{p} 3 k m$ above
$=\mathrm{mgh}=(80)(9.8)(3)$
$=2352 \mathrm{~kJ}$
- Loss in $\mathrm{E}_{\mathrm{p}}$
$=27,936-2352=25,584 \mathbf{k J}$


## Example 4:

State energy change that occurs during fall and explain why man's speed does not depend on his mass (air resistance negligible).

- Loss in $E_{p}$, which is converted to $E_{k}$
- Object with greater mass has more GPE, but requires more conversion to KE to move at same speed as object with smaller mass
- Hence, man's speed depends on gravitational field strength, not mass


## Efficiency

- Efficiency = (Useful output energy/Total input energy) $\mathbf{x} \mathbf{1 0 0 \%}$
- Efficiency = (Useful mechanical work done/Total input energy) $x$ 100\%
- Efficiency = (Useful output power/Total input power) $\times \mathbf{1 0 0 \%}$

