

Chapter 2 Notes

Kinematics

Physical Quantities

- Scalars
 - Has only magnitude (length, mass, time, speed, distance, etc.)
 - Kinematics: Only positive values are possible
- Vector
 - Has both magnitude and **direction** (velocity, displacement, acceleration, etc.)
 - Requires a defined origin and a defined positive direction

- Distance

- Scalar
- SI Unit: Meter
- Length covered by a moving body
- Displacement
 - Vector
 - SI Unit: Meter
 - Straight-line distance covered by a moving body measured from a **reference point** in a stated direction

Difference between speed and velocity:

Speed

- Scalar
- SI Unit: Meter per second
- Distance moved per unit time

Velocity

- Vector
- SI Unit: Meter per second

Distance

Displacement

B

- Rate of change of displacement
- Direction of Motion (arrows!)

Chapter 2: Kinematics

Quantities	Туре	Symbol	Unit
Distance	Scalar	d	m
Displacement	Vector	S	m
Speed	Scalar	v	m s⁻¹
Velocity	Vector	u (initial), v (final)	m s ⁻¹
Acceleration	Vector	a	m s ⁻²
Time	Scalar	t	S

Average Speed

- Total distance divided by total time taken

Average Velocity

- Change in **displacement** (final initial) divided by change in time (final minus initial)

Chapter 2: Kinematics

[#]Cheryl runs once around a 0.25km track in 2.0min and comes back to her starting position. What is the magnitude of her average speed?

Average Speed

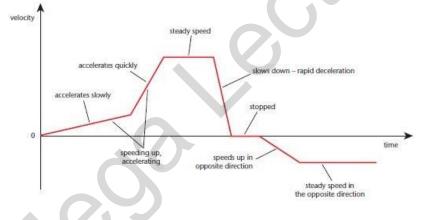
= d/t

- = 0.25km/2min
- = 250m/120s
- = 2.08m s⁻¹ [write out if using later]
- = 2.1m s⁻¹ (2 s.f.)

Acceleration

- Vector
- SI Unit: Meter per second per second (ms⁻²)
- Rate of change of velocity (final minus initial speed, and time)
- $\Delta v / \Delta t$ or $v_f v_i / t_f t_i$
- v = u + at where a = acceleration, v = final velocity, u = initial velocity

f Velocity of a body changes from 2.50m s⁻¹ to 6.75m s⁻¹ in 3.00s. Determine its acceleration.


Acceleration

- $= \triangle v / \triangle t$
- = (6.75 2.50)m s⁻¹/3.00s
- $= 1.42 \text{ m s}^{-2} (3 \text{ s.f.})$

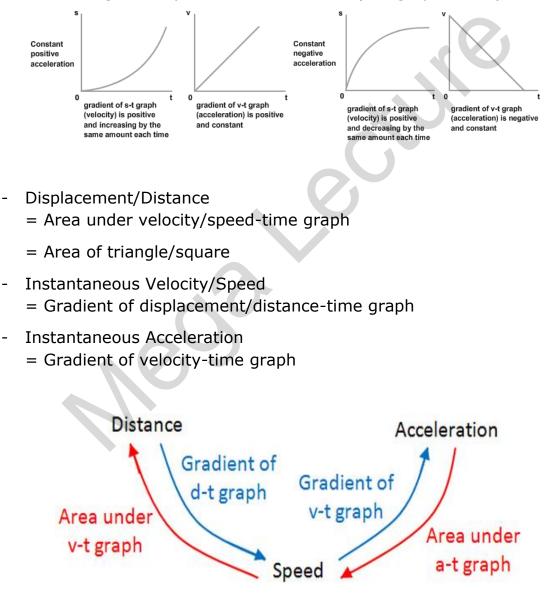
Chapter 2: Kinematics

Velocity-Time Graphs

- When an object gains speed, the acceleration has the same sign and direction as the velocity (graphs = <)
 - Positive velocity and positive acceleration
 - Negative velocity and negative acceleration
- When an object **slows down**, the acceleration has the **opposite sign** and direction as the velocity (graphs = >)
 - Positive velocity and negative acceleration
 - Negative velocity and positive acceleration
 - The graph gets closer to 0, meaning the object slows down

Signs of Velocity and Acceleration

- Case 1: Speeding up \rightarrow v(+) a(+) v_f > v_i = a(+)
- Case 2: Slowing down \rightarrow v(+) a(-) v_f < v_i = a(-)
- Case 3: Speeding up (opp. Dir.) \leftarrow v(-) a(-) -v_f > -v_i = a(-)
- Case 4: Slowing down (opp. Dir.) \leftarrow v(-) a(+) -v_f < -v_i = a(+)

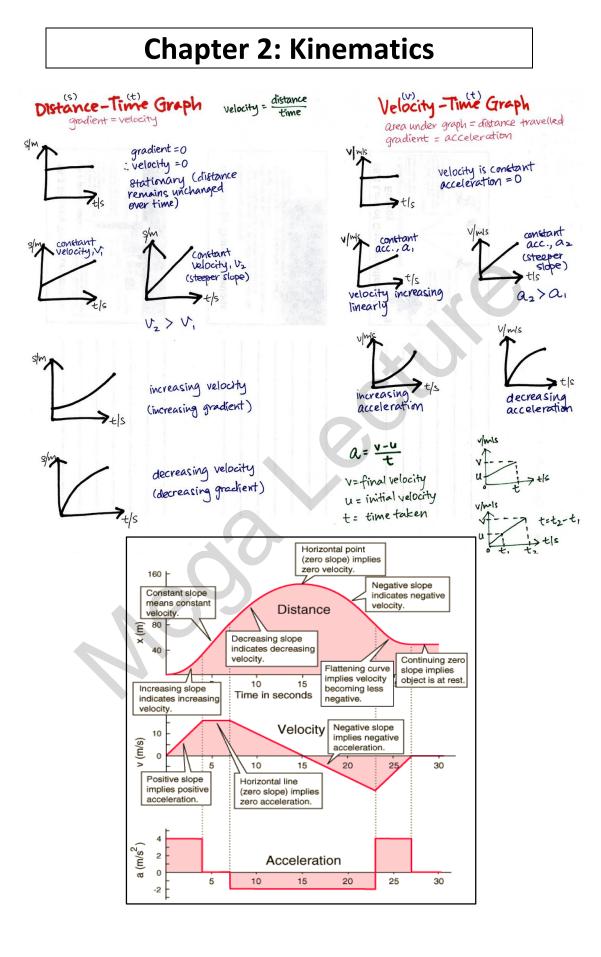


www.megalecture.com

Displacement-Time Graphs

- Constant Displacement: $v = 0m s^{-1}$
- Increasing Velocity: Gradient increases (ref. graph below)
- Decreasing Velocity: Gradient decreases (ref. graph below)

Chapter 2: Kinematics


* `Describe Motion' Questions

- Divide the graph into sections based on the shape of the graph
- X moves in the positive / negative direction from reference point / from point... to... at a constant / increasing / decreasing speed of __ms⁻¹ from t = __s to t = __s

Relationships between Graphs

- A curved velocity-time or speed-time graph means acceleration is increasing or decreasing (non-uniform) at a constant rate.

		Displacement(x)	Velocity(v)	Acceleration (a)
a.	At v=0;	x=constant 0		
	Motion with constant velocity	$x = x_0 + v_0 t + x_0 t^2$	v_0 v_0	o t
	Motion with constant acceleration	$x = v_0 t + (1/2)a_0 t^2$	$v = v_0 + a_0 t$	a = constant
	Motion with constant deceleration	$x = v_0 t - (1/2) a_0 t^2$		a a = constant a

Chapter 2: Kinematics

Acceleration of Free Fall on Earth:

- About 10ms⁻²
 - Objects falling with negligible air resistance 0
 - If air resistance is present, objects fall with a constant speed

Air resistance:

- Opposes the motion of moving object •
- Increases with the speed of the object •
- Increases with surface area
- Increases with density of air

0.0

1.0

2.0

Time (s)

3.0

4.0

With air resistance, it will reach **TERMINAL VELOCITY**

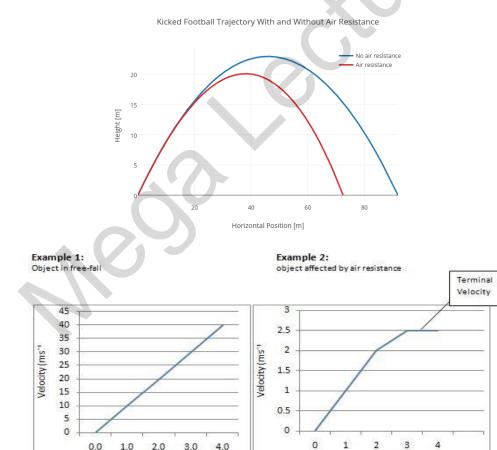


Figure 2.1.1 - air resistance in a velocity time graph

Time (s)