Chapter 17 Current Electricity

Learning Outcomes

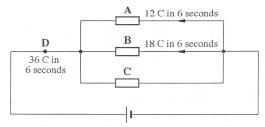
- (a) state that current is a rate of flow of charge and that it is measured in amperes
- (b) distinguish between conventional current and electron flow
- (c) recall and apply the relationship charge = current × time to new situations or to solve related problems
- (d) define electromotive force (e.m.f.) as the work done by a source in driving unit charge around a complete circuit
- (e) calculate the total e.m.f. where several sources are arranged in series
- state that the e.m.f. of a source and the potential difference (p.d.) across a circuit component are measured in volts
- (g) define the p.d. across a component in a circuit as the work done to drive unit charge through the component
- (h) state the definition that resistance = p.d. / current
- apply the relationship R = V/I to new situations or to solve related problems
- describe an experiment to determine the resistance of a metallic conductor using a voltmeter and an ammeter, and make the necessary calculations
- (k) recall and apply the formulae for the effective resistance of a number of resistors in series and in parallel to new situations or to solve related problems
- recall and apply the relationship of the proportionality between resistance and the length and crosssectional area of a wire to new situations or to solve related problems
- (m) state Ohm's Law
- (n) describe the effect of temperature increase on the resistance of a metallic conductor
- (o) sketch and interpret the I/V characteristic graphs for a metallic conductor at constant temperature, for a filament lamp and for a semiconductor diode

(a) What is an electric current?

•	An electric current is formed in a closed circuit when there are	
•	For example, when electrons (charge) flow through a conducting path in a circuit.	
•	An electric current I is a measure of the of flow of	Q
	through a given cross section of a conductor	

Formula:

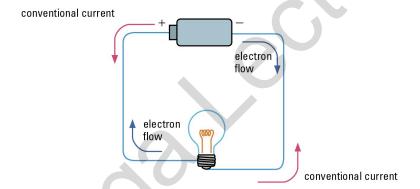
I is the current, Q is the charge, and t is the time taken. The SI unit is the _____ (A



- We make use of an ammeter to measure current.
- The ammeter should be connected in series to the circuit.
- The resistance of an ammeter is zero.

Example 1

The diagram shows an electric circuit. The amounts of charge, which flowed in 6 s through resistor A, B and


point D, are indicated.

- a) What was the amount of charge, which flowed through resistor C in 6 s?
- b) What was the current, which flowed through C?

(b) Conventional current and electron flow

- The movement of electrons from a _____ charged end (negative terminal) of a cell towards the _____ charged end (positive terminal) is known as electron flow.
- Conventional current flow is the flow of positive charge from a _____ charged end to a _____ charged end.

Electric charge (optional)

- Either electrons or positive charges. Because they are so numerous, a simpler number is used to represent them.
- Charge is measured in coulomb (C)
- 1 C of charge → 6.25 × 10¹⁸ electrons

(d) Electromotive Force (e.m.f)

The electromotive force (e.m.f) of an electrical energy source is defined as the _____
 _____ by the source (battery) in driving a unit _____ round a _____

$$\varepsilon = \frac{W}{Q}$$

 ϵ is the e.m.f of the power supply, W is the amount of electrical energy converted from non-electrical forms (work done) and Q is the amount of charge

• The SI unit of e.m.f is _____ (J/C) or _____ (V)

Example 2

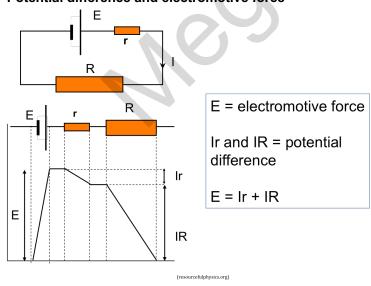
A 9.0 V battery of negligible internal resistance is connected to a light bulb. Calculate the energy transferred in the light bulb when 20 C of charge flows through it.

(g) Potential difference (p.d.)

The potential difference (p.d) between _____ points in an electric circuit is defined as the amount of electrical ____ converted to ____ when one coulomb of positive charge passes between the two points.

$$V = \frac{W}{Q}$$

where V is the potential difference, W is the electrical energy converted to other forms and Q is the amount of charge.


The SI unit for **potential difference** is the volt (V).

Voltmeter

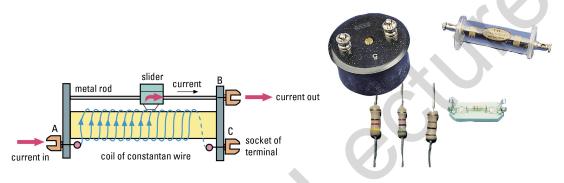
A voltmeter is used to measure emf or potential difference. It is connected in parallel with the component whose emf or p.d. it is measuring. A voltmeter has infinite resistance (very very high) so that no current can flow through it.

Potential difference and electromotive force

Example 3

The potential difference across a light bulb is found to be 3.0 V. The current flowing through it is 0.40 A.

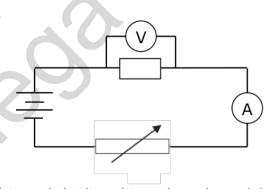
- (a) How much charge flows through the light bulb in 2.0 min?
- (b) How much electrical energy is dissipated by this charge?


(h) Resistance

- It measures how difficult it is for an electric current to pass through a material.
- It is a property of the material that restricts the movement of free electrons in the material.
- The resistance R of a component is defined as the <u>ratio</u> of the <u>voltage or potential difference</u>
 V across it to the <u>current I</u> flowing through it. (MEMORISE)
- The SI unit for resistance is $\underline{\mathsf{ohm}}$ (Ω)

$$R = \frac{V}{I}$$

Resistor

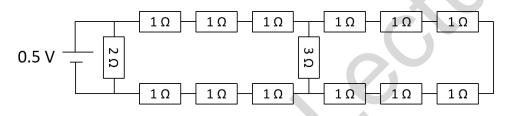

- A resistor is a conductor in a circuit that has a known value of resistance.
- They are mainly used to <u>vary</u> the size of <u>the current</u> flowing in a circuit.
- There are two types of resistors fixed resistors and variable resistors (or rheostats).

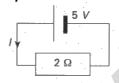
Variable resistor

Fixed resistors

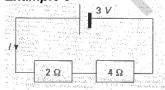
(j) Determining Resistance R

- 1. Adjust the variable resistor such that its resistance is maximum. (why?)
- 2. Close the switch
- 3. Record the voltmeter and ammeter reading
- 4. Adjust the variable resistor to obtain other voltmeter and ammeter readings for a total of six sets of readings (the voltage range should be more than half of the emf of the battery)
- 5. Plot a graph of voltage against current
- 6. The gradient of the straight line is the resistance of the component

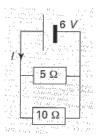

(k) Resistance in a series circuit


Resistance in a parallel circuit

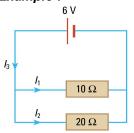
Formula:



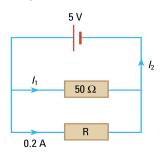
Example 4


- a) Calculate the current I.
- b) What is the potential difference across the 2Ω resistor?

Example 5


- a) Calculate the effective resistance.
- b) Calculate the current I.
- c) Calculate the potential difference across the 2Ω and 4Ω resistor.

Example 6


- a) Calculate the effective resistance.
- b) Calculate the current I.

Example 7

- a) Find the currents I₁, I₂, I₃
- b) What is the voltage or potential difference across the 10 Ω and 20 Ω resistors?
- c) Calculate the effective resistance of the 10Ω and 20Ω resistors.

Example 8

Find I₁, I₂ and R

Example 9

The circuit shows a light bulb connected to 3 resistors and a 12 V source. Initially, all the switches are opened.

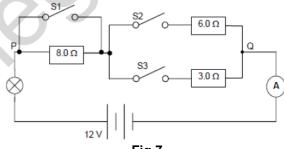
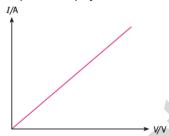


Fig 7

- (a) S1 is opened and S2 and S3 are closed.
 - (i) Calculate the total resistance between points P and Q.
 - (ii) The ammeter registers a reading of 0.3 A. Calculate the resistance of the light bulb.
 - (iii) The lamp is switched on for 2 minutes. Calculate the amount of energy consumed by the lamp.

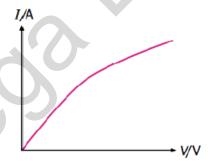
(I) Resistivity ρ

- The longer a wire, the higher its resistance
- The bigger the cross sectional area of a wire, the lower its resistance
- The resistance of a wire is therefore directly proportional to its length and inversely proportional to cross sectional area

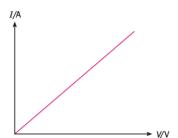

$$R \propto L$$

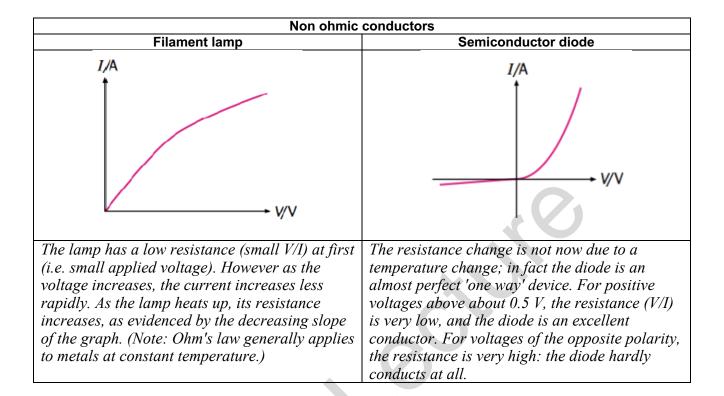
$$R \propto \frac{1}{A}$$

$$R = \rho \frac{L}{A}$$


(m) Ohm's Law

• For a metallic conductor that obeys Ohm's Law, the current flowing through it is directly proportional to the potential difference across it provided physical conditions remain constant


(n) Effect of temperature on the resistance of a metallic conductor


• When **temperature** of a metallic conductor increases, the atoms in it vibrate more energetically. The mobile electrons moving through the conductor collide more frequently with the atoms and slow down. This reduces the **rate of flow of charge (current)** through the conductor and the **resistance** (R = V/I) **increases**

(o) I-V graphs

Ohmic conductor: Metallic conductor at constant temperature

