

Chapter 13 Notes

Laws of Reflection

- Angle of incidence is equal to angle of reflection
- Incident ray, reflected ray and normal all lie on same plane

Refraction

- Definition: Bending of light through different medium
- Light bends towards normal through denser medium
- When light travels from optically less dense to optically denser medium, it bends towards the normal
- When light travels from optically denser to optically less dense medium, it bends away from the normal
- Light travelling perpendicular to boundary passes undeflected

Denser Medium

- Angle of Incidence: Angle between normal and incident ray
- Angle of Refraction: Angle between normal and refracted ray

Snell's Law: $n 1 \sin \theta 1=n 2 \sin \theta 2$

Chapter 13: Light

Rainbow Formation

- White light travels at the same speed in air
- When it enters the water droplet, blue light with shortest wavelength bends the most, red light with longest wavelength bends the least

Optical Density

- Glass is optically denser than air means light travels slower in glass than air and refracts more in glass than in air \rightarrow Measured using refractive index, n
- Glass has refractive index n of 1.5 means in glass, speed of light is $2.0 \times 10^{8} \mathrm{~ms}^{-1}$ or 1.5 times
 slower in glass than in air (air = 1.00, ice = 1.31, water = 1.33, crystal $=1.8$, diamond $=2.4$

Refractive Index

$$
\boldsymbol{n}=\frac{c}{v}
$$

Where \mathbf{n} is the refractive index

$$
\mathbf{c} \text { is the speed of light in air }
$$

$$
\mathbf{v} \text { is the speed of light in medium }
$$

- Example 1: What is the speed of light in a medium with a refractive index of 2.4?

$$
\begin{aligned}
n & =\text { speed of light } / \text { speed of light in medium } \\
2.4 & =c / v \\
v & =3.0 \times 10^{8} \mathrm{~ms}^{-1} / 2.4 \\
& =1.3 \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

Total Internal Reflection

- Occurs in optically denser medium, at angle above critical angle, c

Critical Angle:

$\sin _{c}=\frac{1}{n_{m}}$

Chapter 13: Light

Optical Fibers

- Uses Total Internal Reflection
- Information can be transmitted from one place to another by sending pulses of light through an optical fiber
- Used in telecommunication to transmit telephone and cable television signals, and internet data
- Advantages
- Light travels faster than electricity \rightarrow Data travels faster than in metal wires
- Less signal loss than metal wires + Weigh less than metal wires
- Less expensive + Non-flammable

Angle of Incidence

- i < c \rightarrow Refraction
- $i=c \rightarrow r=90^{\circ}$
- i>c Total internal reflection

Chapter 13: Light

Thin Convex Lenses

- Optical Centre
- The midpoint between the surfaces of the lens on its principal axis.
- Principal axis
- The horizontal line passing through the optical centre of the lens.
- Focal point
- The point where the refracted light rays converge
- Focal length
- The distance between the centre of the lens and the focal point of the lens

Thin Lens

- Formula $\rightarrow \frac{1}{u}+\frac{1}{i}=\frac{1}{f}$

Where
$\mathrm{u}=$ distance of object from optical centre,
$i=$ distance of image from optical centre,
$\mathrm{f}=$ distance of focal point from optical centre

- When u > f, image formed is real, inverted, and on opposite side of lens as object

Chapter 13: Light

- When $u<f$, image formed is virtual, upright and on same side of lens as object

How do diverging lenses work? (concave)

- As light rays travel from air to lens, optically less dense to denser, decreasing speed of light, resulting in change in direction
How do converging lenses work? (convex)
- Cause the light rays to converge at a focal point
- Light rays hit lens at different angles, so they refract at different angles
- Angle of refraction is largest at lens edge while no refraction occurs in the middle
- Depending on distance of object from optical center, image has different characteristics (see thin lens formula)

Thin Converging Lens

- Ray passing through optical centre continues in same direction without bending
- Ray passing through thin lens, parallel to principal axis, always hits focal point

Chapter 13: Light

- Ray passing through focal point always travels parallel to principal axis

Ray Diagrams:

- Ray 1 is parallel to principal axis
- Ray 2 passes through optical centre
- Ray 3 passes through focal point f

Terms to describe the Image

- Orientation
- Upright / inverted
- Size
- Diminished / same size / magnified
- Type
- Real (can be captured on screen) / virtual

Chapter 13: Light

Case 1: *the rays are usually PARALLEL!

- U (object dist) $=$ infinite
- v (image dist) $=F$
- Inverted, diminished, real
- Used in telescope

Case 2

- $u>2 f$
- $f<v<2 f$
- Inverted, diminished, real
- Used in camera, human eye

Case 3

- $u=2 f$
- $v=2 f$
- Inverted, same size, real
- Used in photocopier

Case 4

- $\mathrm{f}<\mathrm{u}<2 \mathrm{f}$
- $v>2 f$
- Inverted, magnified, real
- Used in projector

Case 5

- $u=f$
- $v=$ infinity
- Inverted, magnified, real
- Used in torchlight

Chapter 13: Light

Case 6

- $u<f$
- $v=$ behind object
- upright, magnified, virtual
- Used in magnifying glass

Summary of ray diagrams

Chapter 13: Light

How to Draw Ray Diagrams

- Draw two arrows from the top of the object to indicate the light rays reflected from the object (must draw b)
- Light ray parallel to principal axis
- Light ray that passes through optical centre
- Locate point where the light rays intersect and draw the top of the image there
- If the focal point is not on the opposite side of the lens (i.e. light rays diverge as below), extend the light rays until they converge and draw the image there

Example 1:

If the focal length of the camera is 10 cm , where should the object be placed from the camera?

- Not 20 cm (exactly 2 F), >20cm

Example 2:

A light ray travels into a thin converging lens. Which is the emergent ray?

- A: Draw an object to the light ray + another light ray through the optical center as this ray will not bend, and will converge with the emerging ray

Chapter 13: Light

Example 3:

Half the lens is blocked. What changes occur to the image formed?

- Less bright

Example 4:

A lens forms a blurred image of an object on a screen. How can image be focused on screen?

- Use a lens of longer focal length at the same position

Example 5:

A glass block is replaced with one which has higher refractive index. Total internal reflection now occurs at the top surface. Why?

- With higher refractive index, light ray is refracted more when it enters the glass block \rightarrow Smaller angle of refraction and larger angle of incidence at B (inside block) that is greater than critical angle \rightarrow Total internal reflection
- As refractive index increases, critical angle becomes smaller \rightarrow Angle of incidence is now greater than critical angle \rightarrow Total internal reflection

