For Live Classes, Recorded Lectures, Notes \& Past Papers visit:
www.megalecture.com

Chapter 1 Notes

Physical
Quantities, Units \& Measurement

Physical quantities and SI units

Basic Quantity	Name of SI Unit	SI Unit
Length	Metre	m
Mass	Kilogram	kg
Time	Second	s
Thermodynamic temperature	Kelvin	K
Amount of substance	Mole	mol

Example 1:

What are the derived units of density?

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

therefore units for density $=\frac{\mathrm{kg}}{\mathrm{m}^{3}}$

Prefixes

Prefix	Multiple	Symbol	Factor	Order of magnitude
Giga	1000000 000	G	10^{9}	9
Mega	1000000	M	10^{6}	6
Kilo	1000	K	10^{3}	3
Deci	0.1	D	10^{-1}	-1
Centi	0.01	C	10^{-2}	-2
Milli	0.001	M	10^{-3}	-3
Micro	0.000001	M	10^{-6}	-6
Nano	0.000000 001	N	10^{-9}	-9

Chapter 1: Physical Quantities, Units \& Measurement

Example 2:

Express 0.000 0023m in a suitable magnitude

$$
0.0000023 \mathrm{~m}=2.3 \mu \mathrm{~m}=2.3 \times 10^{-6} \mathrm{~m}
$$

Scalars and vectors

- A scalar quantity has only magnitude but does not have direction.
- A vector has both magnitude and direction

Scalar	Vector
Distance	Displacement
Speed	Velocity
Energy	Force
Time	Acceleration
Volume	Weight
Density	
Mass	

Addition of Vector

Example 3:

Find the resultant force R at point P due to $F=4 N$ and $F=20 N$.

$$
\int_{P}^{F=4 N}
$$

Chapter 1: Physical Quantities, Units \& Measurement

Method 1: Trigonometric Method

Using Pythagoras' Theorem:
$R=\sqrt{4^{2}+20^{2}}$
$R=\sqrt{416}$
$R=20.4 N$
$\tan \theta=\frac{4}{20}$
$\theta=11.3^{\circ}$
Method 2: Graphical Method

Step 1: select an appropriate scale (E.g. 1 cm to 2 N)
Step 2: Draw a parallelogram of vectors to scale
Step 3: measure the diagonal to find R
Step 4: Use the protractor to measure angle θ

Chapter 1: Physical Quantities, Units \& Measurement

Measurement of length and time

Range of length, \boldsymbol{l}	Instrument	Accuracy	Example
$l>100 \mathrm{~cm}$	Measuring tape	$\pm 0.1 \mathrm{~cm}$	Waistline of a person
$5 \mathrm{~cm}<l<100 \mathrm{~cm}$	Metre rule	$\pm 0.1 \mathrm{~cm}$	Height of an object
$1 \mathrm{~cm}<l<10 \mathrm{~cm}$	Vernier calipers	$\pm 0.01 \mathrm{~cm}$	Diameter of a breaker
$l<2 \mathrm{~cm}$	Micrometer screw gauge	$\pm 0.001 \mathrm{~cm}$	Thickness of a length of wire

Vernier Callipers

- A pair of vernier callipers can be used to measure the thickness of solids and the external diameter of an object by using the external jaws.
- The internal jaws of the calliper are used to measure the internal diameter of an object.
- The tail of the calliper is used to measure the depth or a hole.
- Vernier callipers can measure up to a precision of $\pm 0.01 \mathrm{~cm}$

Chapter 1: Physical Quantities, Units \& Measurement

Example 4:

The reading on a vernier callipers when an object is between its jaws is 2.55 cm .
The diagram below shows the reading of the vernier callipers without any object between its jaws.

What is the actual length of the object?

Apparent length $=2.55 \mathrm{~cm}$

Zero error $=-0.02 \mathrm{~cm}$

Actual length $=$ Apparent length - Zero error
Actual length $=2.55 \mathrm{~cm}-(-0.02) \mathrm{cm}$
Actual length $=2.57 \mathrm{~cm}$

Chapter 1: Physical Quantities, Units \& Measurement

Micrometre Screw Gauge

- The jaws of the Micrometre screw gauge are used to measure the external diameter of an object.
- Micrometre screw gauges can measure up to a precision of $\pm 0.01 \mathrm{~mm}$

Chapter 1: Physical Quantities, Units \& Measurement

Example 5:

A micrometer has a zero error as shown in Fig 1.1 and this same instrument is used to measure an object with a reading as shown in Fig 1.2. What is the actual measurement of the object?

Fig. 1.1

Fig. 1.2

Apparent length $=7.50 \mathrm{~mm}+0.39 \mathrm{~mm}$
$=7.89 \mathrm{~mm}$

Zero error $=+0.05 \mathrm{~mm}$

Actual length $=$ Apparent length - Zero error Actual length $=7.89 \mathrm{~mm}-(0.05) \mathrm{mm}$ Actual length $=7.84 \mathrm{~mm}$

Chapter 1: Physical Quantities, Units \& Measurement

Simple Pendulum

- Period is the time taken to move from $P>Q>R>Q>P$
- One oscillation is when the bob travels from $P>Q>R>Q>P$
- The amplitude is the distance between the rest position (point Q) of the bob to the extreme end of the oscillation (either point P or point R)
- The period of the pendulum, T, is affected only by the
- Length of the string, I
- Acceleration due to gravity, g
- T is not affected by the mass of the pendulum bob.

How to find the period:

1. Take the total time for 20 oscillations
2. Repeat step 1
3. Calculate the average of the two timings
4. Divide the average calculated by 20 to obtain the period
