Dr. Hoselton \& Mr. Price

Components of a Vector

$$
\text { if } \quad V=34 \mathrm{~m} / \mathrm{sec} \angle 48^{\circ}
$$

then
$V_{i}=\mathbf{3 4} \mathrm{m} / \sec \cdot\left(\cos 48^{\circ}\right)$; and $V_{J}=\mathbf{3 4} \mathrm{m} / \mathrm{sec} \cdot\left(\sin 48^{\circ}\right)$

Weight $=\mathbf{m} \bullet \mathbf{g}$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{sec}^{2}$ near the surface of the Earth
$=9.795 \mathrm{~m} / \mathrm{sec}^{2}$ in Fort Worth, TX

Density = mass / volume

$$
\rho=\frac{m}{V}\left(u n i t: k g / m^{3}\right)
$$

Ave speed $=$ distance $/$ time $=v=d / t$
Ave velocity $=$ displacement $/$ time $=v=d / t$ Ave acceleration = change in velocity / time

Friction Force

$$
\mathbf{F}_{\mathbf{F}}=\mu \cdot \mathrm{F}_{\mathrm{N}}
$$

If the object is not moving, you are dealing with static friction and it can have any value from zero up to $\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$
If the object is sliding, then you are dealing with kinetic
friction and it will be constant and equal to $\mu_{\mathrm{K}} \mathrm{F}_{\mathrm{N}}$

Torque

$$
\tau=\mathrm{F} \cdot \mathrm{~L} \cdot \sin \theta
$$

Where θ is the angle between F and L ; unit: Nm

Newton's Second Law

$$
\mathrm{F}_{\mathrm{net}}=\Sigma \mathrm{F}_{\mathrm{Ext}}=\mathrm{m} \cdot \mathrm{a}
$$

Work $=\mathbf{F} \cdot \mathbf{D} \cdot \boldsymbol{\operatorname { c o s }} \theta$

Where D is the distance moved and θ is the angle between \mathbf{F} and the direction of motion,

Power = rate of work done unit : J

$$
\text { Power }=\frac{\text { Work }}{\text { time }}
$$

unit : watt

$$
\text { Efficiency }^{=} \text {Work }_{\text {out }} / \text { Energy }_{\text {in }}
$$

Mechanical Advantage $=$ force out $/$ force in

$$
\text { M.A. }=\mathrm{F}_{\text {out }} / \mathrm{F}_{\text {in }}
$$

$$
\begin{array}{rlrl}
\mathrm{v} & =\mathrm{v}_{\mathrm{o}}+\mathrm{a} \bullet \mathrm{t} & & \mathrm{x} \\
\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) & =\mathrm{v}_{\mathrm{o}} \bullet \mathrm{t}+1 / 2 \cdot \mathrm{a} \bullet \mathrm{t}^{2} & & \mathrm{v} \\
\mathrm{v}^{2} & =\mathrm{v}_{\mathrm{o}}^{2}+2 \bullet \mathrm{a} \cdot\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) & \mathrm{t} \\
\left(\mathrm{x}-\mathrm{x}_{\mathrm{O}}\right) & =1 / 2 \bullet\left(\mathrm{v}_{\mathrm{O}}+\mathrm{v}\right) \bullet \mathrm{t} & & \mathrm{a} \\
\left(\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right) & =\mathrm{v} \bullet \mathrm{t}-1 / 2 \bullet \mathrm{a} \bullet \mathrm{t}^{2} & & \mathrm{v}_{\mathrm{o}}
\end{array}
$$

Heating a Solid, Liquid or Gas

$\mathrm{Q}=\mathrm{m} \cdot \mathrm{c} \cdot \Delta \mathrm{T} \quad$ (no phase changes!)
$\mathrm{Q}=$ the heat added
$\mathrm{c}=$ specific heat.
$\Delta \mathrm{T}=$ temperature change, K

Linear Momentum

momentum $=\mathbf{p}=\mathrm{m} \bullet \mathrm{v}=$ mass \cdot velocity
momentum is conserved in collisions
Center of Mass - point masses on a line

$$
\mathrm{x}_{\mathrm{cm}}=\Sigma(\mathrm{mx}) / \mathrm{M}_{\mathrm{total}}
$$

Angular Speed vs. Linear Speed

Linear speed $=\mathrm{v}=\mathrm{r}^{\bullet} \omega=\mathrm{r} \bullet$ angular speed

Pressure under Water

$$
\mathrm{P}=\rho \cdot g \cdot \mathrm{~h}
$$

h = depth of water $\rho=$ density of water

Universal Gravitation

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{r^{2}} \\
& \quad \mathrm{G}=6.67 \mathrm{E}-11 \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{aligned}
$$

Mechanical Energy

$$
\begin{aligned}
& \mathrm{PE}_{\text {Grav }}=\mathrm{P}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h} \\
& \mathrm{KE}_{\text {Linear }}=\mathrm{K}=1 / 2 \cdot \mathrm{~m} \cdot \mathrm{~V}^{2}
\end{aligned}
$$

Impulse $=$ Change in Momentum

$$
\mathrm{F} \cdot \Delta \mathrm{t}=\Delta(\mathrm{m} \cdot \mathrm{v})
$$

Snell's Law

$$
\mathrm{n}_{1} \cdot \sin \theta_{1}=\mathrm{n}_{2} \cdot \sin \theta_{2}
$$

Index of Refraction

$$
\begin{aligned}
& \mathrm{n}=\mathrm{c} / \mathrm{v} \\
& \mathrm{c}=\text { speed of light }=3 \mathrm{E}+8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ideal Gas Law

$$
\begin{aligned}
& \mathrm{P} \cdot \mathrm{~V}=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T} \\
& \mathrm{n}=\text { \# of moles of gas } \\
& \mathrm{R}=\text { gas law constant } \\
&=8.31 \mathrm{~J} / \mathrm{K} \text { mole } .
\end{aligned}
$$

Periodic Waves

$$
\begin{aligned}
& \mathrm{v}=f \bullet \lambda \\
& f=1 / \mathrm{T} \quad \mathrm{~T}=\text { period of wave }
\end{aligned}
$$

Constant-Acceleration Circular Motion

$$
\begin{array}{rlr}
\omega=\omega_{\mathrm{o}}+\alpha \bullet \mathrm{t} & \theta \\
\theta-\theta_{o}=\omega_{o} \bullet t+1 / 2 \bullet \alpha \bullet t^{2} & \omega \\
\omega^{2}=\omega_{\mathrm{o}}^{2}+2 \cdot \alpha \cdot\left(\theta-\theta_{\mathrm{o}}\right) & \mathrm{t} \\
\theta-\theta_{\mathrm{o}}=1 / 2 \bullet\left(\omega_{\mathrm{o}}+\omega\right) \bullet \mathrm{t} & \alpha \\
\theta-\theta_{\mathrm{o}}=\omega \bullet \mathrm{t}-1 / 2 \bullet \alpha \bullet \mathrm{t}^{2} & \omega_{\mathrm{o}}
\end{array}
$$

Dr. Hoselton \& Mr. Price

Buoyant Force - Buoyancy
$\mathrm{F}_{\mathrm{B}}=\rho \bullet \mathrm{V} \bullet \mathrm{g}=\mathrm{m}_{\text {Displaced fluid }} \bullet \mathrm{g}=$ weight $_{\text {Displaced fluid }}$
$\rho=$ density of the fluid
$\mathrm{V}=$ volume of fluid displaced

$$
\mathrm{V}=\mathrm{I} \cdot \mathrm{R}
$$

$\mathrm{V}=$ voltage applied
$\mathrm{I}=$ current
$\mathrm{R}=$ resistance

Resistance of a Wire

$$
\mathrm{R}=\rho \cdot \mathrm{L} / \mathrm{A}_{\mathrm{x}}
$$

$\rho=$ resistivity of wire material
$\mathrm{L}=$ length of the wire
$\mathrm{A}_{\mathrm{x}}=$ cross-sectional area of the wire
Heat of a Phase Change
$\mathrm{Q}=\mathrm{m} \cdot \mathrm{L}$
$L=$ Latent Heat of phase change
Hooke's Law

$$
\mathrm{F}=\mathrm{k} \cdot \mathrm{X}
$$

Potential Energy of a spring
$\mathrm{W}=1 / 2 \cdot \mathrm{k} \cdot \mathrm{x}^{2}=$ Work done on spring

Electric Power

$$
\mathrm{P}=\mathrm{I}^{2} \cdot \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}=\mathrm{I} \cdot \mathrm{~V}
$$

Speed of a Wave on a String

$$
T=\frac{m v^{2}}{L}
$$

$$
\mathrm{T}=\text { tension in string }
$$

$\mathrm{m}=$ mass of string
$\mathrm{L}=$ length of string
Projectile Motion
Horizontal: $\mathrm{x}-\mathrm{x}_{\mathrm{o}}=\mathrm{v}_{\mathrm{o}} \bullet \mathrm{t}+0$
Vertical: $y-y_{o}=v_{0} \bullet t+1 / 2 \bullet a \bullet t^{2}$

Centripetal Force

$$
F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

Kirchhoff's Laws

Loop Rule: $\Sigma_{\text {Around any loop }} \Delta \mathrm{V}_{\mathrm{i}}=0$
Node Rule: $\Sigma_{\text {at any node }} \mathrm{I}_{\mathrm{i}}=0$
Minimum Speed at the top of a Vertical Circular Loop

$$
v=\sqrt{r g}
$$

Page 2 of 8

Newton's Second Law and

 Rotational Inertia$$
\tau=\text { torque }=\mathrm{I} \cdot \alpha
$$

$\mathrm{I}=$ moment of inertia $=\mathrm{m} \cdot \mathrm{r}^{2}$ (for a point mass)
(See table in Lesson 58 for I of 3D shapes.)

Circular Unbanked Tracks

$$
\frac{m v^{2}}{r}=\mu m g
$$

Continuity of Fluid Flow

$$
\begin{array}{ll}
\mathrm{A}_{\text {in }} \cdot \mathrm{V}_{\text {in }}=\mathrm{A}_{\text {out }} \bullet \vee_{\text {out }} & \begin{array}{r}
\mathrm{A}=\text { Area } \\
\mathrm{v}=\text { velocity }
\end{array}
\end{array}
$$

Moment of Inertia	I
cylindrical hoop	$\mathrm{m}^{2} \cdot \mathrm{r}^{2}$
solid cylinder or disk	$1 / 2 \mathrm{~m}^{2} \cdot \mathrm{r}^{2}$
solid sphere	$2 / 5{\mathrm{~m} \cdot \mathrm{r}^{2}}^{2} \mathrm{~m} \cdot \mathrm{r}^{2}$
hollow sphere	$1 / 12 \mathrm{~m} \cdot \mathrm{~L}^{2}$
thin rod (center)	$1 / 3 \mathrm{~m} \cdot \mathrm{~L}^{2}$
thin rod (end)	

\#59
Capacitors $\quad \mathrm{Q}=\mathrm{C} \cdot \mathrm{V}$
$\mathrm{Q}=$ charge on the capacitor
$\mathrm{C}=$ capacitance of the capacitor
$\mathrm{V}=$ voltage applied to the capacitor
RC Circuits (Discharging)

$$
\begin{gathered}
\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{o}} \cdot \mathrm{e}^{-\mathrm{t} / \mathrm{RC}} \\
\mathrm{~V}_{\mathrm{c}}-\mathrm{I} \cdot \mathrm{R}=0
\end{gathered}
$$

Thermal Expansion

$$
\text { Linear: } \Delta \mathrm{L}=\mathrm{L}_{\mathrm{o}} \cdot \alpha \cdot \Delta \mathrm{~T}
$$

Volume: $\Delta \mathrm{V}=\mathrm{V}_{\mathrm{o}} \bullet \beta \cdot \Delta \mathrm{T}$
\#61 Bernoulli's Equation

$$
\begin{gathered}
\mathrm{P}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}+1 / 2 \cdot \rho \cdot \bullet^{2}=\mathrm{constant} \\
\mathrm{Q}_{\text {Volume Flow Rate }}=\mathrm{A}_{1} \cdot \mathrm{~V}_{1}=\mathrm{A}_{2} \cdot \mathrm{~V}_{2}=\text { constant }
\end{gathered}
$$

Rotational Kinetic Energy (See LEM, pg 8)

$$
\begin{gathered}
\mathrm{KE}_{\text {rotational }}=1 / 2 \cdot \mathbf{I} \cdot \omega^{2}=1 / 2 \cdot \mathrm{I} \cdot(\mathrm{v} / \mathrm{r})^{2} \\
\mathrm{KE}_{\text {rolling w/o slipping }}=1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}+1 / 2 \cdot \mathrm{I} \cdot \omega^{2}
\end{gathered}
$$

Angular Momentum $=\mathbf{L}=\mathrm{I} \bullet \omega=\mathrm{m} \bullet \mathrm{v} \cdot \mathrm{r} \cdot \sin \theta$
Angular Impulse equals
CHANGE IN Angular Momentum

$$
\Delta \mathrm{L}=\tau_{\text {orque }} \cdot \Delta \mathrm{t}=\Delta(\mathrm{I} \bullet \omega)
$$

Dr. Hoselton \& Mr. Price
\#63 Period of Simple Harmonic Motion

$$
T=2 \pi \sqrt{\frac{m}{k}} \quad \text { where } \mathrm{k}=\text { spring constant }
$$

$f=1 / \mathrm{T}=1 /$ period

Banked Circular Tracks

$$
\mathrm{v}^{2}=\mathrm{r} \cdot \mathrm{~g} \cdot \tan \theta
$$

First Law of Thermodynamics

$$
\Delta \mathrm{U}=\mathrm{Q}_{\mathrm{Net}}+\mathrm{W}_{\mathrm{Net}}
$$

Change in Internal Energy of a system $=$

+ Net Heat added to the system
+ Net Work done on the system

Flow of Heat through a Solid

$$
\begin{aligned}
& \Delta \mathrm{Q} / \Delta \mathrm{t}=\mathrm{k} \cdot \mathrm{~A} \cdot \Delta \mathrm{~T} / \mathrm{L} \\
& \mathrm{k}=\text { thermal conductivity } \\
& \mathrm{A}=\text { area of solid } \\
& \mathrm{L}=\text { thickness of solid }
\end{aligned}
$$

Potential Energy stored in a Capacitor

$$
\mathrm{P}=1 / 2 \cdot \mathrm{C} \cdot \mathrm{~V}^{2}
$$

RC Circuit formula (Charging)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\text {cell }} \cdot\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right) \\
& \quad \mathrm{R} \cdot \mathrm{C}=\tau=\text { time constant } \\
& \mathrm{V}_{\text {cell }}-\mathrm{V}_{\text {capacitor }}-\mathrm{I} \cdot \mathrm{R}=0
\end{aligned}
$$

Simple Pendulum

$$
T=2 \pi \sqrt{\frac{L}{g}} \text { and } f=1 / \mathrm{T}
$$

Sinusoidal motion

$$
\mathrm{x}=\mathrm{A} \cdot \cos (\omega \cdot \mathrm{t})=\mathrm{A} \cdot \cos (2 \cdot \pi \cdot f \cdot \mathrm{t})
$$

$\omega=$ angular frequency $f=$ frequency
Doppler Effect

$$
f^{\prime}=f \frac{343 \pm_{\text {Away }}^{\text {Toward }} v_{o}}{343 \mp_{\text {Away }}^{\text {Toward }}} v_{s}
$$

$v_{\mathrm{o}}=$ velocity of observer: $v_{\mathrm{s}}=$ velocity of source
$\mathbf{2}^{\text {nd }}$ Law of Thermodynamics

The change in internal energy of a system is
$\Delta \mathrm{U}=\mathrm{Q}_{\text {Added }}+\mathrm{W}_{\text {Done On }}-\mathrm{Q}_{\text {lost }}-\mathrm{W}_{\text {Done By }}$
Maximum Efficiency of a Heat Engine
(Carnot Cycle) (Temperatures in Kelvin)

$$
\% E f f=\left(1-\frac{T_{c}}{T_{h}}\right) \cdot 100 \%
$$

$$
\frac{1}{f}=\frac{1}{D_{o}}+\frac{1}{D_{i}}=\frac{1}{o}+\frac{1}{i} \quad \begin{array}{r}
f=\text { focal length } \\
\mathrm{i}=\text { image distance } \\
\mathrm{o}=\text { object distance }
\end{array}
$$

Magnification

$$
M=-D_{i} / D_{o}=-i / o=H_{i} / H_{o}
$$

Helpful reminders for mirrors and lenses
Focal Length of:
mirror
lens converging diverging
Object distance $=0$ all objects
Object height $=\mathrm{H}_{\mathrm{o}} \quad$ all objects
Image distance $=\mathbf{i}$ real virtual
Image height $=\mathrm{H}_{\mathrm{i}} \quad$ virtual, upright \quad real, inverted
Magnification virtual, upright real, inverted
\#76 Coulomb's Law

$$
\begin{gathered}
F=k \frac{q_{1} q_{2}}{r^{2}} \\
k=\frac{1}{4 \pi \varepsilon_{o}}=9 E 9 \frac{N \cdot m^{2}}{C^{2}}
\end{gathered}
$$

Capacitor Combinations

PARALLEL

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots
$$

SERIES

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots+\frac{1}{C_{n}}=\sum_{i=1}^{n} \frac{1}{C_{i}}
$$

Electric Field around a point charge

$$
\begin{gathered}
E=k \frac{q}{r^{2}} \\
k=\frac{1}{4 \pi \varepsilon_{o}}=9 E 9 \frac{N \cdot m^{2}}{C^{2}}
\end{gathered}
$$

Magnetic Field around a wire

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

Magnetic Flux
$\Phi=\mathrm{B} \cdot \mathrm{A} \cdot \cos \theta$
Force caused by a magnetic field
on a moving charge

$$
\mathrm{F}=\mathrm{q} \cdot \mathrm{v} \cdot \mathrm{~B} \cdot \sin \theta
$$

Entropy change at constant T

$\Delta S=Q / T$
(Phase changes only: melting, boiling, freezing, etc)

Dr. Hoselton \& Mr. Price

Capacitance of a Capacitor

$$
\begin{aligned}
& \mathrm{C}=\kappa \cdot \varepsilon_{0} \cdot \mathrm{~A} / \mathrm{d} \\
& \kappa \quad=\text { dielectric constant } \\
& \mathrm{A}=\text { area of plates } \\
& \mathrm{d}=\text { distance between plates } \\
& \varepsilon_{\mathrm{o}}=8.85 \mathrm{E}(-12) \mathrm{F} / \mathrm{m}
\end{aligned}
$$

\#85
Induced Voltage $\quad \mathrm{N}=\#$ of loops

$$
E m f=N \frac{\Delta \Phi}{\Delta t}
$$

Lenz's Law - induced current flows to create a B-field opposing the change in magnetic flux.

Inductors during an increase in current

$$
\begin{gathered}
V_{L}=V_{\text {cell }} \cdot \mathrm{e}^{-t /(L / R)} \\
I=\left(V_{\text {cell }} / R\right) \cdot\left[1-e^{-t /(L / R)}\right] \\
L / R=\tau=\text { time constant }
\end{gathered}
$$

Transformers

$$
\begin{gathered}
\mathrm{N}_{1} / \mathrm{N}_{2}=\mathrm{V}_{1} / \mathrm{V}_{2} \\
\mathrm{I}_{1} \cdot \mathrm{~V}_{1}=\mathrm{I}_{2} \cdot \mathrm{~V}_{2}
\end{gathered}
$$

Decibel Scale
B (Decibel level of sound $)=10 \log \left(I / I_{o}\right)$
$\mathrm{I}=$ intensity of sound
$\mathrm{I}_{\mathrm{o}}=$ intensity of softest audible sound

Poiseuille's Law

$$
\Delta \mathrm{P}=8 \cdot \eta \cdot \mathrm{~L} \cdot \mathrm{Q} /\left(\pi \cdot \mathrm{r}^{4}\right)
$$

$\eta=$ coefficient of viscosity
$\mathrm{L}=$ length of pipe
$r=$ radius of pipe
$Q=$ flow rate of fluid

Stress and Strain

$$
\mathbf{Y} \text { or } \mathbf{S} \text { or } \mathbf{B}=\text { stress } / \text { strain }
$$

$$
\text { stress }=\mathbf{F} / \mathbf{A}
$$

Three kinds of strain: unit-less ratios
I. Linear: strain $=\Delta \mathrm{L} / \mathrm{L}$
II. Shear: $\operatorname{strain}=\Delta x / L$
III. Volume: strain $=\Delta \mathrm{V} / \mathrm{V}$

Postulates of Special Relativity

1. Absolute, uniform motion cannot be detected.
2. No energy or mass transfer can occur at speeds faster than the speed of light.

Lorentz Transformation Factor

$$
\beta=\sqrt{1-\frac{v^{2}}{c^{2}}}
$$

Page 4 of 8

Early Quantum Physics

Rutherford-Bohr Hydrogen-like Atoms

$$
\begin{aligned}
& \frac{1}{\lambda}=R \cdot\left(\frac{1}{n_{s}^{2}}-\frac{1}{n^{2}}\right) \text { meters }^{-1} \\
& \begin{aligned}
f=\frac{c}{\lambda} & =c R\left(\frac{1}{n_{s}^{2}}-\frac{1}{n^{2}}\right) H z \\
\mathrm{R} & =\text { Rydberg's Constant } \\
& =1.097373143 \mathrm{E} 7 \mathrm{~m}^{-1} \\
\mathrm{n}_{\mathrm{s}} & =\text { series integer }(2=\text { Balmer }) \\
\mathrm{n} & =\text { an integer }>\mathrm{n}_{\mathrm{s}}
\end{aligned}
\end{aligned}
$$

Mass-Energy Equivalence

$$
\mathrm{m}_{\mathrm{v}}=\mathrm{m}_{\mathrm{o}} / \beta
$$

Total Energy $=K E+m_{0} c^{2}=m_{0} c^{2} / \beta$
Usually written simply as $\quad \mathrm{E}=\mathrm{m} \mathrm{c}^{2}$
de Broglie Matter Waves
For light: $\quad \mathrm{E}_{\mathrm{p}}=\mathrm{h} \bullet f=\mathrm{h} \bullet \mathrm{c} / \lambda=\mathrm{p} \cdot \mathrm{c}$
Therefore, momentum: $\quad \mathrm{p}=\mathrm{h} / \lambda$
Similarly for particles, $\mathrm{p}=\mathrm{m} \cdot \mathrm{v}=\mathrm{h} / \lambda$, so the matter wave's wavelength must be

$$
\lambda=\mathrm{h} / \mathrm{m} \mathrm{v}
$$

Energy Released by Nuclear
Fission or Fusion Reaction
$\mathrm{E}=\Delta \mathrm{m}_{0} \cdot \mathrm{c}^{2}$

Dr. Hoselton \& Mr. Price

MISCELLANEOUS FORMULAS

$\begin{aligned} & \text { Quadratic Formula } \\ & \text { if } \mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \\ & \text { then }\end{aligned}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Trigonometric Definitions

$\sin \theta=$ opposite / hypotenuse
$\cos \theta=$ adjacent $/$ hypotenuse
$\tan \theta=$ opposite / adjacent

$$
\begin{aligned}
\sec \theta & =1 / \cos \theta=\text { hyp } / \text { adj } \\
\csc \theta & =1 / \sin \theta=\text { hyp } / \text { opp } \\
\cot \theta & =1 / \tan \theta=\text { adj } / \text { opp }
\end{aligned}
$$

Inverse Trigonometric Definitions

$$
\begin{aligned}
& \theta=\sin ^{-1}(\text { opp } / \text { hyp }) \\
& \theta=\cos ^{-1}(\text { adj } / \text { hyp }) \\
& \theta=\tan ^{-1}(\text { opp } / \text { adj })
\end{aligned}
$$

Law of Sines

$\mathrm{a} / \sin \mathrm{A}=\mathrm{b} / \sin \mathrm{B}=\mathrm{c} / \sin \mathrm{C}$
or
$\sin \mathrm{A} / \mathrm{a}=\sin \mathrm{B} / \mathrm{b}=\sin \mathrm{C} / \mathrm{c}$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=c^{2}+a^{2}-2 c a \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

T-Pots

For the functional form

$$
\frac{1}{A}=\frac{1}{B}+\frac{1}{C}
$$

You may use "The Product over the Sum" rule.

$$
A=\frac{B \cdot C}{B+C}
$$

For the Alternate Functional form

$$
\frac{1}{A}=\frac{1}{B}-\frac{1}{C}
$$

You may substitute T-Pot-d

$$
A=\frac{B \cdot C}{C-B}=-\frac{B \cdot C}{B-C}
$$

Unit	Base Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time Electric Current	second	s
Thermodynamic Temperature	kelvin	K
Luminous Intensity	candela	cd
Quantity of Substance	moles	mol
Plane Angle	radian	rad
Solid Angle	steradian	sr or str

Some Derived SI Units

Symbol/Unit	Quantity	Base Units
C coulomb	Electric Charge	A•S
F farad	Capacitance	$\mathrm{A}^{2} \cdot \mathrm{~s} 4 /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
H henry	Inductance	$\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{A}^{2} \cdot \mathrm{~s}^{2}\right)$
Hz hertz	Frequency	s^{-1}
J joule	Energy \& Work	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{m}$
N newton	Force	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
Ω ohm	Elec Resistance	$\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{A}^{2} \cdot \mathrm{~s}^{2}\right)$
Pa pascal	Pressure	$\mathrm{kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
T tesla	Magnetic Field	$\mathrm{kg} /\left(\mathrm{A} \cdot \mathrm{s}^{2}\right)$
V volt	Elec Potential	$\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{A} \cdot \mathrm{s}^{3}\right)$
W watt	Power	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$

Non-SI Units

${ }^{\circ} \mathrm{C}$ degrees Celsius Temperature
eV electron-volt Energy, Work

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com Reference Guide \& Formula Sheet for Physics

Dr. Hoselton \& Mr. Price

Aa acceleration, Area, $\mathrm{A}_{\mathrm{x}}=$ Cross-sectional Area, Amperes, Amplitude of a Wave, Angle,
Bb Magnetic Field, Decibel Level of Sound, Angle,
Cc specific heat, speed of light, Capacitance, Angle, Coulombs, ${ }^{\circ}$ Celsius, Celsius Degrees, candela,
Dd displacement, differential change in a variable, Distance, Distance Moved, distance,
Ee base of the natural logarithms, charge on the electron, Energy,
Ff Force, frequency of a wave or periodic motion, Farads,
Gg Universal Gravitational Constant, acceleration due to gravity, Gauss, grams, Giga-,
Hh depth of a fluid, height, vertical distance, Henrys, Hz=Hertz,
Ii Current, Moment of Inertia, image distance, Intensity of Sound,
Jj Joules,
$\mathbf{K k} \mathrm{K}$ or $\mathrm{KE}=$ Kinetic Energy, force constant of a spring, thermal conductivity, coulomb's law constant, kg=kilograms, Kelvins, kilo-, rate constant for Radioactive decay $=1 / \tau=\ln 2 /$ half-life,
Ll Length, Length of a wire, Latent Heat of Fusion or Vaporization, Angular Momentum, Thickness, Inductance,
Mm mass, Total Mass, meters, milli-, Mega-, $\mathrm{m}_{\mathrm{o}}=$ rest mass, mol=moles,
Nn index of refraction, moles of a gas, Newtons, Number of Loops, nano-,
Oo
Pp Power, Pressure of a Gas or Fluid, Potential Energy, momentum, Power, $\mathrm{Pa}=$ Pascal,
Qq Heat gained or lost, Maximum Charge on a Capacitor, object distance, Flow Rate,
Rr radius, Ideal Gas Law Constant, Resistance, magnitude or length of a vector, rad=radians
Ss speed, seconds, Entropy, length along an arc,
Tt time, Temperature, Period of a Wave, Tension, Teslas, $\mathrm{t}_{1 / 2}=$ half-life,
Uu Potential Energy, Internal Energy,
Vv velocity, Velocity, Volume of a Gas, velocity of wave, Volume of Fluid Displaced, Voltage, Volts, $\mathbf{W w}$ weight, Work, Watts, $\mathrm{Wb}=$ Weber,
$\mathbf{X x}$ distance, horizontal distance, x -coordinate east-and-west coordinate,
Yy vertical distance, y-coordinate, north-and-south coordinate,
Zz z-coordinate, up-and-down coordinate,

Page 6 of 8
A α Alpha angular acceleration, coefficient of linear expansion,
$\mathrm{B} \beta$ Beta coefficient of volume expansion, Lorentz transformation factor, X χ Chi
$\Delta \delta$ Delta $\Delta=$ change in a variable,
E $\varepsilon \operatorname{Epsilon} \varepsilon_{o}=$ permittivity of free space,
$\Phi \phi$ Phi Magnetic Flux, angle,
$\Gamma \gamma$ Gamma surface tension $=\mathrm{F} / \mathrm{L}$, $1 / \gamma=$ Lorentz transformation factor, H η Eta

It Iota

$\vartheta \varphi$ Theta and Phi lower case alternates.
Kк Kappa dielectric constant,
$\Lambda \lambda$ Lambda wavelength of a wave, rate constant for Radioactive decay $=1 / \tau=\ln 2 /$ half-life,
$\mathbf{M} \mu \mathbf{M u}$ friction, $\mu_{o}=$ permeability of free space, micro-,
$\mathrm{N} \nu \mathbf{N u}$ alternate symbol for frequency,
Oo Omicron
$\Pi \pi$ Pi 3.1425926536...,
$\Theta \theta$ Theta angle between two vectors,
P ρ Rho density of a solid or liquid, resistivity,
$\Sigma \sigma$ Sigma Summation, standard deviation,
T τ Tau torque, time constant for a exponential processes; eg $\tau=\mathrm{RC}$ or $\tau=\mathrm{L} / \mathrm{R}$ or $\tau=1 / \mathrm{k}=1 / \lambda$,
Yu Upsilon
$\varsigma \varpi$ Zeta and Omega lower case alternates
$\Omega \omega$ Omega angular speed or angular velocity, Ohms
$\Xi \xi \mathbf{X i}$
$\Psi \psi$ Psi
Z弓 Zeta

Values of Trigonometric Functions

for $1^{\text {st }}$ Quadrant Angles
(simple mostly-rational approximations)

θ	$\boldsymbol{\operatorname { s i n }} \theta$	$\boldsymbol{\operatorname { c o s }} \theta$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
0°	0	1	0
10°	1/6	65/66	11/65
15°	1/4	28/29	29/108
20°	1/3	16/17	17/47
29°	$15^{1 / 2} / 8$	7/8	$15^{1 / 2} / 7$
30°	1/2	$3^{1 / 2} / 2$	1/3 ${ }^{1 / 2}$
37°	3/5	4/5	3/4
42°	2/3	3/4	8/9
45°	$2^{1 / 2} / 2$	$2^{1 / 2 / 2}$	1
49°	3/4	2/3	9/8
53°	4/5	3/5	4/3
60	$3^{1 / 2} / 2$	1/2	$3^{1 / 2}$
61°	7/8	$15^{1 / 2} / 8$	7/155 ${ }^{1 / 2}$
70°	16/17	1/3	47/17
75°	28/29	$1 / 4$	108/29
80°	65/66	1/6	65/11
90°	1	0	∞

(Memorize the Bold rows for future reference.)

Derivatives of Polynomials

For polynomials, with individual terms of the form Ax^{n}, we define the derivative of each term as

$$
\frac{d}{d x}\left(A x^{n}\right)=n A x^{n-1}
$$

To find the derivative of the polynomial, simply add the derivatives for the individual terms:

$$
\frac{d}{d x}\left(3 x^{2}+6 x-3\right)=6 x+6
$$

Integrals of Polynomials

For polynomials, with individual terms of the form Ax^{n}, we define the indefinite integral of each term as

$$
\int\left(A x^{n}\right) d x=\frac{1}{n+1} A x^{n+1}
$$

To
find the indefinite integral of the polynomial, simply add the integrals for the individual terms and the constant of integration, C .

$$
\int(6 x+6) d x=\left[3 x^{2}+6 x+C\right]
$$

Prefixes

Factor Prefix Symbol Example

10^{18}	exa-	E	38 Es (Age of the Universe in Seconds)
10^{15}	peta-	P	
10^{12}	tera-	T	0.3 TW (Peak power of a 1 ps pulse from a typical Nd-glass laser)
10^{9}	giga-	G	22 G\$ (Size of Bill \& Melissa Gates' Trust)
10^{6}	mega-	M	6.37 Mm (The radius of the Earth)
10^{3}	kilo-	k	1 kg (SI unit of mass)
10^{-1}	deci-	d	10 cm
10^{-2}	centi-	c	2.54 cm ($=1 \mathrm{in}$)
10^{-3}	milli-	m	1 mm (The smallest division on a meter stick)
10^{-6}	micro-	μ	
10^{-9}	nano-	n	510 nm (Wavelength of green light)
10^{-12}	pico-	p	$1 \mathbf{p g}$ (Typical mass of a DNA sample used in genome studies)
10^{-15}	femto-	f	
10^{-18}	atto-	a	600 as (Time duration of the shortest laser pulses)

For Live Classes, Recorded Lectures, Notes \& Past Papers visit: www.megalecture.com Reference Guide \& Formulla Sheet for Physics

Dr. Hoselton \& Mr. Price

Linear Equivalent Mass

Rotating systems can be handled using the linear forms of the equations of motion. To do so, however, you must use a mass equivalent to the mass of a non-rotating object. We call this the Linear Equivalent Mass (LEM). (See Example I)

For objects that are both rotating and moving linearly, you must include them twice; once as a linearly moving object (using m) and once more as a rotating object (using LEM). (See Example II)

The LEM of a rotating mass is easily defined in terms of its moment of inertia, I.

$$
\mathrm{LEM}=\mathrm{I} / \mathrm{r}^{2}
$$

For example, using a standard table of Moments of Inertia, we can calculate the LEM of simple objects rotating on axes through their centers of mass:

	I	LEM
Cylindrical hoop	mr^{2}	m
Solid disk	$1 / 2 \mathrm{mr}^{2}$	$1 / 2 \mathrm{~m}$
Hollow sphere	$2 / 5 \mathrm{mr}^{2}$	$2 / 5 \mathrm{~m}$
Solid sphere	$2 / 3 \mathrm{mr}^{2}$	$2 / 3 \mathrm{~m}$

Example I

A flywheel, $\mathrm{M}=4.80 \mathrm{~kg}$ and $\mathrm{r}=0.44 \mathrm{~m}$, is wrapped with a string. A hanging mass, m, is attached to the end of the string.

When the hanging mass is

released, it accelerates downward at $1.00 \mathrm{~m} / \mathrm{s}^{2}$. Find $\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ the hanging mass.

To handle this problem using the linear form of Newton's Second Law of Motion, all we have to do is use the LEM of the flywheel. We will assume, here, that it can be treated as a uniform solid disk.

Page 8 of 8
The only external force on this system is the weight of the hanging mass. The mass of the system consists of the hanging mass plus the linear equivalent mass of the fly-wheel. From Newton's $2^{\text {nd }}$ Law we have

$$
\begin{array}{ll}
\mathrm{F}=\mathrm{ma}, \text { therefore, } \quad & \mathrm{mg}=[\mathrm{m}+(\mathrm{LEM}=1 / 2 \mathrm{M})] \mathrm{a} \\
& \mathrm{mg}=[\mathrm{m}+1 / 2 \mathrm{M}] \mathrm{a} \\
& (\mathrm{mg}-\mathrm{ma})=1 / 2 \mathrm{M} \mathrm{a} \\
& \mathrm{~m}(\mathrm{~g}-\mathrm{a})=1 / 2 \mathrm{Ma} \\
\mathrm{~m}=1 / 2 \cdot \mathrm{M} \cdot \mathrm{a} /(\mathrm{g}-\mathrm{a}) \\
\mathrm{m}=1 / 2 \cdot 4.8 \cdot 1.00 /(9.81-1) \\
& \mathrm{m}=0.27 \mathrm{~kg}
\end{array}
$$

If $\mathrm{a}=\mathrm{g} / 2=4.905 \mathrm{~m} / \mathrm{s}^{2}, \quad \mathrm{~m}=2.4 \mathrm{~kg}$
If $\mathrm{a}=3 / 4 \mathrm{~g}=7.3575 \mathrm{~m} / \mathrm{s}^{2}, \quad \mathrm{~m}=7.2 \mathrm{~kg}$
Note, too, that we do not need to know the radius unless the angular acceleration of the fly-wheel is requested. If you need α, and you have r, then $\alpha=a / r$.

Example II

Find the kinetic energy of a disk, $\mathrm{m}=6.7 \mathrm{~kg}$, that is moving at $3.2 \mathrm{~m} / \mathrm{s}$ while rolling without slipping along a flat, horizontal surface. $\left(I_{\text {DISK }}=1 / 2 \mathrm{mr}^{2} ; \mathrm{LEM}=1 / 2 \mathrm{~m}\right)$

The total kinetic energy consists of the linear kinetic energy, $\mathrm{K}_{\mathrm{L}}=1 / 2 \mathrm{mv}^{2}$, plus the rotational kinetic energy, $\mathrm{K}_{\mathrm{R}}=1 / 2(\mathrm{I})(\omega)^{2}=1 / 2(\mathrm{I})(\mathrm{v} / \mathrm{r})^{2}=1 / 2\left(\mathrm{I} / \mathrm{r}^{2}\right) \mathrm{v}^{2}=1 / 2(\mathrm{LEM}) \mathrm{v}^{2}$.

$$
\begin{aligned}
& \mathrm{KE}=1 / 2 \mathrm{mv}^{2}+1 / 2 \cdot(\mathrm{LEM}=1 / 2 \mathrm{~m}) \cdot \mathrm{v}^{2} \\
& \mathrm{KE}=1 / 2 \cdot 6.7 \cdot 3.2^{2}+1 / 2 \cdot(1 / 2 \cdot 6.7) \cdot 3.2^{2} \\
& \mathrm{KE}=34.304+17.152=51 \mathrm{~J}
\end{aligned}
$$

Final Note:

This method of incorporating rotating objects into the linear equations of motion works in every situation I've tried; even very complex problems. Work your problem the classic way and this way to compare the two. Once you've verified that the LEM method works for a particular type of problem, you can confidently use it for solving any other problem of the same type.

