Shape of Molecules

Hydrogen sulphide, H₂S, is a foul-smelling compound found in the gases from volcanoes. Hydrogen sulphide is covalent, melting at -85 °C and boiling at -60 °C.

(c) (i) Draw a 'dot-and-cross' diagram to show the structure of the H₂S molecule.

(ii) Predict the shape of the H₂S molecule.

.....

9701_s/05/qp2

(c) (i) Sulfur dioxide and sulfur trioxide both contain only S=O double bonds.

Draw labelled diagrams to show the shapes of these two molecules.

SO₂ SO₃

[2]
(ii) For your diagrams in (i), name the shapes and suggest the bond angles.
SO₂ shape
SO₂ bond angle
SO₃ bond angle
[2]

9701_w/14/qp21

(iii) Suggest why using hydrazine as a rocket fuel could be regarded as being 'environmentally friendly'.

[4]

- (c) The bonding in hydrazine is similar to that in ammonia.
 - (i) Showing outer-shell electrons only, draw a 'dot-and-cross' diagram of an ammonia molecule.

(ii) Draw a diagram to show the three-dimensional shape of an ammonia molecule.

(iii) Draw a diagram to show the shape of a hydrazine molecule. Show clearly which atom is joined to which and show clearly the value of **one** bond angle.

		[4]
(d)	Deduce the oxidation state of nitrogen in hydrazine.	
		[1]
- 14		

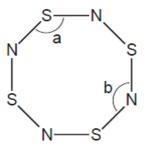
9701_s/10/qp23

A greenhouse gas which is present in very small amounts in the atmosphere is sulfur hexafluoride, SF_6 , which is used in high voltage electrical switchgear.

(e) What shape is the SF₆ molecule?

.....

- (f) Another sulfur compound which is present in the Earth's atmosphere is carbonyl sulfide, OCS. The sequence of atoms in the molecule is oxygen-carbon-sulfur and the molecule is not cyclic.
 - (i) Draw a 'dot-and-cross' diagram of the OCS molecule. Show outer electrons only.


(ii) Suggest a value for the O-C-S bond angle.

.....

[2]

9701_s/12/qp21

(c) Sulfur forms the compound S_4N_4 with nitrogen. The structure of S_4N_4 is shown below. Assume all bonds shown are single bonds.

Determine the number of lone pairs of electrons around a nitrogen atom and a sulfur atom in S₄N₄.

nitrogen atom sulfur atom

(ii) Which bond angle, a or b, in the S₄N₄ molecule will be smaller? Explain your answer.

.....

[2]

(e)	Sulfur reacts with fluorine to form SF_{6} . State the shape and bond angle of SF_{6} .	
	shape of SF ₆	-
	bond angle of SF ₆	-
	[2	

9701_s/14/qp21

(e)	Phosphorus reacts with chlorine to form PCl_5 .	
	State the shape of and two different bond angles in a molecule of PCl_5 .	
	shape of PC15	
	bond angles in PC1 ₅	[2]
9701_s/14,	/qp22	[4]

- 1 Carbon disulfide, CS₂, is a volatile, flammable liquid which is produced in small quantities in volcanoes.
 - (a) The sequence of atoms in the CS₂ molecule is sulfur to carbon to sulfur.
 - Draw a 'dot-and-cross' diagram of the carbon disulfide molecule. Show outer electrons only.

(ii) Suggest the shape of the molecule and state the bond angle.

hape	
oond angle	
[3]	

9701_s/13/qp23

- 1 Valence Shell Electron Pair Repulsion theory (VSEPR) is a model of electron-pair repulsion (including lone pairs) that can be used to deduce the shapes of, and bond angles in, simple molecules.
 - (a) Complete the table below by using simple hydrogen-containing compounds. One example has been included.

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH3
4	0		
3	1		
2	2		

[3]

(b) Tellurium, Te, proton number 52, is used in photovoltaic cells.

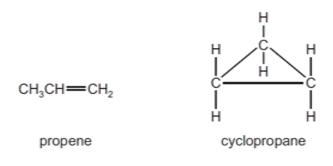
When fluorine gas is passed over tellurium at 150 °C, the colourless gas TeF₆ is formed.

(i) Draw a 'dot-and-cross' diagram of the TeF₆ molecule, showing outer electrons only.

(ii) What will be the shape of the TeF₆ molecule?

.....

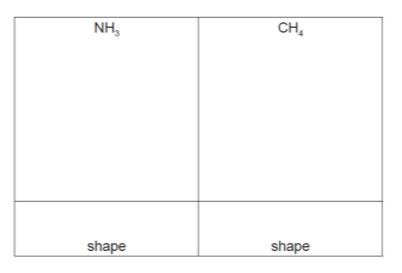
(iii) What is the F–Te–F bond angle in TeF₆?


.....

[3]

[Total: 6]

9701_w/13/qp21


2 The molecular formula C₃H₆ represents the compounds propene and cyclopropane.

(a) What is the H-C-H bond angle at the terminal =CH₂ group in propene?

9701_w/13/qp21

- 1 Ammonia, NH₃, and methane, CH₄, are the hydrides of elements which are next to one another in the Periodic Table.
 - (a) In the boxes below, draw the 'dot-and-cross' diagram of a molecule of each of these compounds. Show outer electrons only. State the shape of each molecule.

[3]

9701_w/13/qp23