WORKSHEET: IDEAL GASES

6 Use of the Data Booklet is relevant to this question.

The gas laws can be summarised in the ideal gas equation.

$$pV = nRT$$

0.56 g of ethene gas is contained in a vessel at a pressure of 102 kPa and a temperature of 30 °C.

What is the volume of the vessel?

- **A** 49 cm³
- **B** 494 cm³
- C 48 900 cm³
- **D** 494 000 cm³

s/12/qp11

6 Use of the Data Booklet is relevant to this question.

The gas laws can be summarised in the ideal gas equation.

$$pV = nRT$$

0.96 g of oxygen gas is contained in a glass vessel of volume 7000 cm3 at a temperature of 30 °C.

What is the pressure in the vessel?

- A 1.1 kPa
- **B** 2.1 kPa
- C 10.8kPa
- D 21.6 kPa

s/12/qp12

9 Use of the Data Booklet is relevant to this question.

In an experiment using a gas syringe, 0.10 g of a gas is found to occupy 83.1 cm³, measured at standard pressure $(1.0 \times 10^5 \text{ Pa})$ and 27°C .

What is the relative molecular mass of the gas?

$$A = \frac{0.10 \times 8.31 \times 27}{1.0 \times 10^5 \times 83.1}$$

$$B = \frac{0.10 \times 8.31 \times 300}{1.0 \times 10^5 \times 83.1}$$

$$C \qquad \frac{0.10 \times 8.31 \times 27}{1.0 \times 10^5 \times 83.1 \times 10^{-6}}$$

$$D = \frac{0.10 \times 8.31 \times 300}{1.0 \times 10^{5} \times 83.1 \times 10^{-6}}$$

w/03/qp1

8 Use of the Data Booklet is relevant to this question.

Which expression gives the pressure exerted by 1.6 x 10^{-3} mol of N_2 in a container of volume 3.0 dm³ at 273 °C?

$$A = \frac{1.6 \times 10^{-3} \times 8.31 \times 273}{3.0 \times 10^{-6}}$$
 Pa

B
$$\frac{1.6 \times 10^{-3} \times 8.31 \times (273 + 273)}{3.0 \times 10^{-6}}$$
 Pa

$$\mathbf{C} = \frac{1.6 \times 10^{-3} \times 8.31 \times 273}{3.0 \times 10^{-3}} \qquad \text{Pa}$$

$$D = \frac{1.6 \times 10^{-3} \times 8.31 \times (273 + 273)}{3.0 \times 10^{-3}}$$
 Pa

w/04/qp1

What is the volume of steam produced when 1.00 cm³ of ice is heated to 323 °C (596 K) at a pressure of one atmosphere (101 kRa)?

[1 mol of a gas occupies 24.0 dm³ at 25 °C (298 K) and one atmosphere.]

- A 0.267 dm
- B 1.33 dm
- C 2.67 dm³
- **D** 48.0 dm³

s/08/qp1

7 Flask X contains 5 dm³ of helium at 12kPa pressure and flask Y contains 10 dm³ of neon at 6 kPa pressure.

If the flasks are connected at constant temperature, what is the final pressure?

- A 8kPa
- **B** 9 kPa
- C 10kPa
- **D** 11 kPa

w/10/qp12

Use of the Data Booklet is relevant to this question. 6

The volume of a sample of ammonia is measured at a temperature of 60 °C and a pressure of 103 kPa. The volume measured is 5.37×10^{-3} m³.

What is the mass of the sample of ammonia, given to two significant figures?

A 0.00019g

B 0.0034 g

C 0.19 g

D 3.4 g

w/12/qp11

Use of the Data Booklet is relevant to this question.

The volume of a sample of ammonia was measured at a temperature of 40 °C and a pressure of 95 kPa. The volume measured was 4.32×10^{-5} m³.

What is the mass of the sample of ammonia?

A 2.7×10^{-5} g

B 2.1×10^{-4} **C** 2.7×10^{-2} **D** 2.1×10^{-1} **a**

w/12/qp13

Which diagram shows the correct graph of V against p for a fixed mass of an ideal gas at constant temperature?

w/12/qp13

- 33 Which are assumptions of the kinetic theory of gases and hence of the ideal gas equation, PV = nRT?
 - Molecules move without interacting with one another except for collisions.
 - 2 Intermolecular forces are negligible.
 - Intermolecular distances are much greater than the molecular size.

w/11/qp12

9 The use of sucrose in food processing depends in part on osmotic pressure, symbol Π .

In dilute solution, Π varies with concentration in a similar way to gas behaviour. The equation $\Pi V = nRT$ can be used, where n is the number of moles of solute molecules contained in volume V at temperature T. The number of moles of solvent molecules should be ignored.

Under aqueous acidic conditions sucrose is hydrolysed.

$$C_{12}H_{22}O_{11} + H_2O \rightarrow CH_2OH(CHOH)_4CHO + CH_2OH(CHOH)_3COCH_2OH$$

sucrose glucose fructose

What can be deduced from this hydrolysis equation?

	the osmotic pressure	glucose and fructose are
Α	decreases	optical isomers
В	decreases	structural isomers
С	increases	optical isomers
D	increases	structural isomers

w/11/qp12

5 At room temperature and pressure chlorine does not behave as an ideal gas.

At which temperature and pressure would the behaviour of chlorine become more ideal?

	pressure	temperature
Α	50	200
В	50	400
С	200	200
D	200	400

w/11/qp11

- 7 Which of the following would behave most like an ideal gas at room temperature?
 - A carbon dioxide
 - B helium
 - C hydrogen
 - D nitrogen

w/08/qp1

- 31 What are assumptions of the kinetic theory of gases and hence of the ideal gas equation, PV = nRT?
 - 1 Molecules move without interacting with one another except for collisions.
 - 2 Intermolecular forces are negligible.
 - 3 Intermolecular distances are much greater than the molecular size.

w/07/qp1

6 For an ideal gas, the plot of *pV* against *p* is a straight line. For a real gas, such a plot shows a deviation from ideal behaviour. The plots of *pV* against *p* for three real gases are shown below.

The gases represented are ammonia, hydrogen and nitrogen.

What are the identities of the gases X, Y and Z?

	Х	Y	Z
Α	ammonia	nitrogen	hydrogen
В	hydrogen	nitrogen	ammonia
С	nitrogen	ammonia	hydrogen
D	nitrogen	hydrogen	ammonia

w/06/qp1

- 5 Which gas is likely to deviate most from ideal gas behaviour?
 - A HCl
- **B** He
- C CH₄
- D N_2

w/05/qp1

10 The value of pV is plotted against p for two gases, an ideal gas and a non-ideal gas, where p is the pressure and V is the volume of the gas.

Which of the following gases shows the greatest deviation from ideality?

- A ammonia
- B ethene
- C methane
- D nitrogen

w/03/qp1

31 The gas laws can be summarised in the ideal gas equation.

$$pV = nRT$$

where each symbol has its usual meaning.

Which statements are correct?

- One mole of an ideal gas occupies the same volume under the same conditions of temperature and pressure.
- The density of an ideal gas at constant pressure is inversely proportional to the temperature, *T*.
- 3 The volume of a given mass of an ideal gas is doubled if its temperature is raised from 25 °C to 50 °C at constant pressure.

s/12/qp11

Under which set of conditions is a gas most likely to behave ideally?

	temperature	pressure	
Α	high high		
В	high	low	
С	low	high	
D	low	low	

s/12/qp11

32 When a sample of a gas is compressed at constant temperature from 1500 kPa to 6000 kPa, its volume changes from 76.0 cm³ to 20.5 cm³.

Which statements are possible explanations for this behaviour?

- The gas behaves non-ideally.
- The gas partially liquefies.
- Gas is adsorbed on to the vessel walls.

s/11/qp12

33 Which equations apply to an ideal gas?

[p = pressure, V = volume, M = molar mass, ρ = density, c = concentration, R = gas constant, T = temperature]

1
$$p = \frac{\rho RT}{M}$$

1
$$p = \frac{\rho RT}{M}$$
 2 $pV = MRT$ 3 $pV = \frac{cRT}{M}$

s/11/qp12

- 3 Which gas closely approaches ideal behaviour at room temperature and pressure?
 - A ammonia
 - carbon dioxide
 - helium
 - D oxygen

s/10/qp11

32 An ideal gas obeys the gas laws under all conditions of temperature and pressure.

Which of the following are true for an ideal gas?

- 1 The molecules have negligible volume.
- 2 There are no forces of attraction between molecules.
- 3 The molecules have an average kinetic energy which is proportional to its absolute temperature.

s/09/qp1

8 Which diagram correctly describes the behaviour of a fixed mass of an ideal gas? (*T* is measured in K.)

s/08/qp1

- 6 Which of the following least resembles an ideal gas?
 - A ammonia
 - **B** helium
 - C hydrogen
 - **D** trichloromethane

s/06/qp1

32 A quantity of solid Y was placed in a previously evacuated vessel and the apparatus was ther held at a series of different temperatures. At each temperature, the mass of Y in the vapour state was calculated from pressure measurements. The results are shown below.

What can be deduced from the diagram?

- 1 The mass of Y used in the experiment was *m*.
- 2 The pressure of the vapour was constant for all temperatures above temperature T.
- 3 Liquid appeared at temperature T.

s/05/qp1

6 Measured values of the pressure, volume and temperature of a known mass of a gaseous compound are to be substituted into the equation

$$pV = nRT$$

in order to calculate the relative molecular mass, $M_{\rm r}$, of the compound.

Which conditions of pressure and temperature would give the most accurate value of M_r ?

	pressure	temperature	
Α	A high high		
В	high	low	
С	low	high	
D	low	low	

s/03/qp1