

Q1.

4	(a)		e.g. both transverse/longitudinal/same type meet at a point, same direction of polarisation, etc1 each, max 3(allow 1 mark for any condition for observable interference)	. ВЗ	[3]	
	(b)	(i)1	allow 0.3 mm $ ightarrow$ 3 mm	.B1		
		(i)2	λ = ax/D (allow any subject)	. B1		
		(ii)1	separation increasedless bright			
		(ii)2	separation increasedless bright	2223778		
		(ii)3	separation unchanged	. 91	[7]	
Q2.			· ·			
	2 (a)	(i) (ii)	$\lambda = 0.6 \text{ m}$ frequency (= v/λ) = 330/0.60	ıvıaı	B1 C1	ίοὶ
		4-7	$= 550 \text{ Hz}$ (use of c = $3 \times 10^8 \text{ ms}^{-1}$ scores no mirks)		Ă1	[3]
	(b)		amplitude shown as greater than a but less than 2a and constant correct phase (wave to be at least three half-periods, otherwise -1 overall)		B1 B1	[2]
O2			(wave to be at least three same periods, otherwise -1 overally	Total		[5]
Q3.						[V]
6	(a)		When two (or more) waves meet (not 'superpose' or 'interfere') resultant displacement is the sum of individual (displacements)		B1 M1 A1	[3]
	(b)		any correct line through points of intersection of crests		B1 B1	[2]
	(c)		$\lambda = ax/D$ OR $\lambda = a\sin \theta$ and $\theta = x/D$ 650 x 10 ⁻⁹ = $(a \times 0.70 \times 10^{-3})/1.2$ $a = 1.1 \times 10^{-3}$ m		C1 C1	101
		(ii) 1 2	no change brighter		A1 B1 B1	[3]
		3	no change (accept stay/remain dark)	Total	B1	[3] [11]

Q4.

5	i e	(a)	When a wave (front) is incident on an edge or an obstacle/slit/gap Wave 'bends' into the geometrical	М1	
			shadow/changes direction/spreads	A1	[2]
		(b) (i)	$d = 1/(750 \times 10^{3})$ = 1.33 × 10 ⁶ m	C1 A1	[2]
		711	529 29e	107.11	121
		(11)	$1.33 \times 10^{-6} \times \sin 90^{\circ} = n \times 590 \times 10^{-9}$ n = 2 (must be an integer)	C1 A1	[2]
		(iii) formula assumes no path difference of light before entering grating or		
			there is a path difference before the grating	B1	[1]
		(c)	e.g. lines further apart in second order lines fainter in second order (allow any sensible difference: 1 each, max 2) (if differences stated but without reference to the orders, max 1 max 2)	B2 mark)	[2]
Q5.					
6	(a)	(i) corr	rect shape drawn	B1	[1]
		(ii) two	nodes marked correctly	B1	[1]
	(b)	$\frac{1}{2}\lambda = 0.3$ $v = f\lambda$	324 m	C1 C1	
			$2 \times 2 \times 0.324$ 2 m s ⁻¹	A1	[3]

Q6.

(c) $1/4\lambda = 16.2$ cm

either antinode is 0.5 cm above top of tube

or antinode is 16.2 cm above water surface

C1

A1

[2]

5	(a)	(i)	vibrations (in	plane) normal to direction of energy propagation	B1	[1]
		(ii)	vibrations in or	ne direction (normal to direction of propagation)	B1	[1]
	(b)	(i)	maximum amp at (displaceme zero/minimum	ent) antinodes / where there are no heaps, wave has blitude (of vibration) ent) nodes/where there are heaps, amplitude of vibration is to / settles at (displacement) nodes	B1 B1 B1	[3]
		(ii)	$2.5\lambda = 39 \text{ cm}$ $v = f\lambda$ $v = 2.14 \times 10^3$		C1 C1	(10)
			= 334 m s ⁻¹	(allow 330, not 340)	A1	[3]
	(c)	eith or	er wave travell two waves of	rmed by interference / superposition / overlap of ing down tube and its reflection of same (type and) frequency travelling in opposite directions of the incident / reflected waves	B1 B1 B1	[3]
Q7 .				Q,°		
5	(a) (i)		number of oscillations per unit time of the source / of a point on the wave	M1 A1	
		(ii)	speed:	speed at which energy is transferred// speed of wavefront	В1	[1]
	(b) (i)	does not tran	sfer energy (along the wave)	В1	[1]
		(ii)	position (alor	ng wave) where amplitude of vibration is a maximum	В1	[1]
		(iii)	all three posi	tions marked	В1	[1]
	(c	ν	evelength = 2 = $f\lambda$ = 125 × 0.356	× 17.8 = 35.6 cm	C1 C1	
		44	= 44.5 m s^{-1} $.5^2 = 4.00 \text{ / m}$ = $2.0 \times 10^{-1} \text{ k}$		C1 C1 A1	
Q8 .			·			
5	(a)	or p	ath difference er same ampli	rence is π rad / 180° (between waves from S ₁ and S ₂) is $\frac{1}{2}\lambda/(n+\frac{1}{2})\lambda$. B1 tude / intensity at M des is 1.28 / ratio of intensities is 1.28²		[2]
	(b)	wav min	relength change λ	etween waves from S ₁ and S ₂ = 28 cm		[4]

Q9.

5	(a)	constant phase difference	B1	[1]
	(b)	allow wavelength estimate 750 nm \rightarrow 550 nm	C1 C1 A1	[3]
	(c)	no longer complete destructive interference / amplitudes no longer completely cancel	M1 A1	[2]
Q10.				
4	(a)	when a <u>wave</u> (front) passes by/incident on an edge/slit		[2]
	(b)	$\tan \theta = \frac{38}{165}$ $\theta = 13^{\circ}$ $d \sin \theta = n\lambda$ $d = 2.82 \times 10^{-6}$ number = $(1/d =) 3.6 \times 10^{5}$	C1	[4]
	(c)	P remains in same position X and Y rotate through 90°		[2]
	(d)	either screen not parallel to grating or grating not normal to (incident) light	. B1	[1]
Q11.				
4	(a)	e.g. no energy transfer amplitude varies along its length/nodes <u>and</u> antinodes neighbouring points (in inter-nodal loop) vibrate in phase, etc. (any two, 1 mark each to max 2	2	[2]

	(b)	(i)	$\lambda = (330 \times 10^2)/550$ $\lambda = 60 \text{ cm}$	M1 A0	[1]
		(ii)	node labelled at piston antinode labelled at open end of tube additional node and antinode in correct positions along tube	B1 B1 B1	[3]
	(c)		owest frequency, length = λ/4	C1	
		frec	juency = 330/1.8	C1 A1	[3]
Q12.	•				
5	(a) (i) 1 number of oscillations per unit time (not per second) 2 $n\lambda$	B1 A1	[1] [1]
		(ii) $v = \text{distance } / \text{time} = n\lambda/t$ $n/t = f \text{ hence } v = f\lambda$	M1 A1	
			or f oscillations per unit time so $f\lambda$ is distance per unit time distance per unit time is v so $v = f\lambda$	M1 A1	[2]
	(b) (i	1.0 period is 3 × 2 = 6.0 ms frequency = 1/(6 × 10 ⁻³) = 170 Hz	C1 A1	[2]
		(ii) wave (with approx. same amplitude and) with correct phase difference	B1	[1]
Q13.					
7	(a)		en waves overlap / meet, (resultant) displacement is the sum of the individual placements	ual B1	[1]
	(b)	(i)	two (ball-type) dippers connected to the same vibrating source /motor	(M1) (A1)	
			or one wave source described with two sliks	(M1) (A1)	[2]
		(ii)	lamp with viewing screen on opposite side of tank means of freezing picture e.g. strobe	B1 B1	[2]
	(c)	(i)	two correct lines labelled X	В1	[1]
		(ii)	correct line labelled N	В1	[1]

Q14.

whatsapp: +92 323 509 4443, email: megalecture@gmail.com

6	(a)	(i)	to p	roduce coheren	t sources	or const	ant phase	differenc	e	B1	[1]
		(ii)	1. 2.	360° / 2π rad a 180° / π rad a						B1 B1	[1] [1]
		(iii)		waves overlap (resultant) disp at P crest on tro	lacement		f displacen	nents of	each wave	B1 B1 B1	[2] [1]
	(b)		= <i>ax i</i> = 2 × = 639	$2.3 \times 10^{-3} \times 0.2$	25 ×10 ^{−3} /	1.8				C1 C1 A1	[3]
Q15 .											
6	(a)	(i)	amı	olitude = 7.6 mr	n i	allow 7.5	5 mm			A1	[1]
		(ii)	180	°/π <u>rad</u>						A1	[1]
		(iii)		f×λ 15×0.8 12 ms ⁻¹						C1 A1	
	(b)			sketch with pea oved by the co				od of 0.2	25 T	B1 B1	
	(c)	(i)	zer	(rad)						A1	[1]
		(ii)		node maximum e zero amplitud						A1	[1]
	(iii)	3								A1	[1]
	(iv)	hori	zont	al line through	central s	ection of	wave			В1	[1]

Q16.

6 (a) (i) coherence: constant phase difference M1 between (two) waves A1 [2]

(ii) path difference is either λ or $n\lambda$ or phase difference is 360° or $n \times 360^{\circ}$ or $n2\pi$ rad B1 [1]

(iii) path difference is either $\lambda/2$ or $(n + \frac{1}{2}) \lambda$ or phase difference is odd multiple of either 180° or π rad	В1	[1]
(iv) $w = \lambda D / a$ = $[630 \times 10^{-9} \times 1.5] / 0.45 \times 10^{-3}$ = 2.1×10^{-3} m	C1 C1 A1	[3]
(b) no change to <u>dark</u> fringes no change to separation/fringe width <u>bright</u> fringes are brighter/lighter/more intense	B1 B1 B1	[3]
Q17.		
6 (a) two waves travelling (along the same line) in opposite directions overlap/meet same frequency / wavelength resultant displacement is the sum of displacements of each wave / produces nodes and antinodes	M1 A1 B1	[3]
(b) apparatus: source of sound + detector + reflection system adjustment to apparatus to set up standing waves – how recognised measurements made to obtain wavelength	B1 B1 B1	[3]
(c) (i) at least two nodes and two antinodes	A1	[1]
(ii) node to node = λ / 2 = 34 cm (allow 33 to 35 cm), $c = f\lambda$ $f = 340 / 0.68 = 500$ (490 to 520) Hz	C1 C1 A1	[3]
Q18.		
6 (a) (i) diffraction bending/spreading of light at edge/slit this occurs at each slit	B B	
(ii) constant phase difference between each of the waves	В	1 [1]
(iii) (when the waves meet) the resultant displacement is the sum of displacements of each wave	f the B	1 [1]
(b) $d \sin \theta = \lambda$ $n = d / \lambda = 1 / 450 \times 103 \times 630 \times 10^{-9}$ n = 3.52 hence number of orders = 3	C M A	1
(c) λ blue is less than λ red more orders seen each order is at a smaller angle than for the equivalent red	M A A	.1

Q19.

5	(a)	coh pat	wes overlap / meet / superpose herence / constant phase difference (not constant λ or frequency) h difference = 0, λ , 2λ or phase difference = 0, 2π , 4π ne direction of polarisation/unpolarised	(B1) (B1) (B1) (B1) max. 3	[3]
	(b)	f = λ =	v / f $12 \times 10^9 \text{ Hz}$ $3 \times 10^8 / 12 \times 10^9$ (any subject) 0.025 m	C1 C1 M1 A0	[3]
	(c)		ximum at P reral minima or maxima between O and P	B1 B1	
			naxima / 6 minima between O and P 7 maxima / 6 minima including O and P	В1	[3]
	(d)	slits (r	s made narrower s put closer together not just 'make slits smaller') ow tilting the slits M1 and explanation of axes of rotation A1	B1 B1	[2]
Q20.					
5	(a)	(i)	$v = f\lambda$ $\lambda = 40 / 50 = 0.8(0) \text{ m}$	C1 A1	[2]
		(ii)	waves (travel along string and) reflect at Q / wall / fixed end incident and reflected waves interfere / superpose	B1 B1	[2]
	(b)	(i)	nodes labelled at P, Q and the two points at zero displacement antinodes labelled at the three points of maximum displacement	B1 B1	[2]
		(ii)	$(1.5\lambda \text{ for PQ hence PQ} = 0.8 \times 1.5) = 1.2 \text{ m}$	A1	[1]
	1	(iii)	T = 1 / f = 1/50 = 20 ms 5 ms is ½ of cycle horizontal line through PQ drawn on Fig. 5.2	C1 A1 B1	[3]

Q21.

5	(a)		n waves overlap / meet resultant displacement is the sum of the individual displacements of the waves	B1 B1	[2]
	(b)	(i)	1. phase difference = $180^{\circ} / (n + \frac{1}{2}) 360^{\circ}$ (allow in rad)	В1	[1]
			2. phase difference = 0 / 360 ° / (n360 °) (allow in rad)	В1	[1]
		(ii)	$v = f\lambda$ $\lambda = 320 / 400 = 0.80 \text{ m}$	C1 A1	[2]
		(iii)	path difference = $7 - 5 = 2$ (m) = 2.5λ hence minimum	М1	
			or maximum if phase change at P is suggested	A1	[2]
Q22.	•				
5	(a)	displacement & direction of energy travel normal to one anomer B1	[1]	
	(b) (i)	phase angle of 60° correct (need to see 1½ wavelengths) B1 lags behind T ₁ B1	[2]	
		(ii)	waves must be in same place (at same time)	[2]	
		(iii)	1½4	[3]	
Q23.	•				
4	(a)	(i)	1 amplitude = 0.4(0) mm		
		(i)	wavelength = 7.5 x 10 ⁻² m (1 sig. fig1 unless already penalised)		
		(i):	3 period = 0.225 ms		
		(i)	4 $v = f\lambda$ = 4400 x 7.5 x 10 ⁻²		[6]

	(a)	(ii)	reasonable shape, same amplitude and wavelength double	ed B1		[1]
	(b)	(i)	1.7(2) µm	A1		
		(ii)	d sin2 = $n\lambda$ (double slit formula scores 0/2) 1.72 x 10 ⁻⁶ x sin 2 = 590 x 10 ⁻⁹			
		(iii)	½L = 1.5 tan20.1 L = 1.1 m			[5]
Q2 4	l.					
2	(a)	all sam	ne speed in a vacuum (allow medium)/all travel in a vacuum	(1)		
		transve	erse/can be polarised	(1)		
		underg	o diffraction/interference/superposition	(1)		
		can be	reflected/refracted	(1)		
		show p	properties of particles	(1)		
		oscillat	ting electric and magnetic fields	(1)		
		transfe	r energy/progressive	(1)		
		not affe	ected by electric and magnetic fields	(1)		
		(allow	any three, 1 each)		ВЗ	[3]
	(b)	495 nn	n = 495 x 10 ⁻⁹ m		C1	
		numbe	$r = 1/(495 \times 10^{-9}) = 2.02 \times 10^{6}$		A 1	[2]
		(allow	2 or more significant figures)			
	(c)	(i) allo	ow $10^{-7} \to 10^{-11} \text{ m}$		В1	
		(ii) allo	ow $10^{-3} \to 10^{-6} \mathrm{m}$		В1	[2]

Q25.

4 (a) wavelength = 1.50 m B1 [1]

(b) $v = f \lambda$ C1

speed = 540 m s⁻¹ A1 [2]

(c) (progressive) wave reflected at the (fixed) ends B1

wave is formed by superposition of (two travelling) waves B1

this quantity is the speed of the travelling wave B1 [3]

Q26.

- similarity: e.g. same wavelength/frequency/period, constant phase difference

 difference: e.g. different amplitude/phase (do not allow a reference to phase for both similarity and difference)
 - (b) constant phase difference so coherent B1 [1]
 (c) (i) intensity ∞ amplitude² C1
 - $I \propto 3^2$ and $I_{\rm B} \propto 2^2$ leading to M1 A0 [2]
 - (ii) resultant amplitude = 1.0 × 10⁴ cm C1 resultant intensity = $\frac{1}{9}$ A1 [2]
 - (d) (i) displacement = 9 B1 [1] (ii) $x_A = -2.6 \times 10^{-4}$ cm and $x_B = +1.7 \times 10^{-4}$ cm C1 allow $\pm 0.5 \times 10^{-4}$ cm)
 - resultant displacement = (-) 0.9×10^{-4} cm A1 [2]

Q27.

- 4 (a) (i) when two (or more) waves meet (at a point) M1
 there is a change in overall intensity / displacement A1
 (ii) constant phase difference (between waves) B1 [3]
 - (b) (i) $d\sin\theta = n\lambda$ B1 $(10^{-3} / 550) \sin 90 = n \times 644 \times 10^{-9}$ C1 n = 2.8 C1 so two orders A1 [4]

(power-of-ten error giving 2800 orders, allow 1/3 only for calculation of n)

(ii) 1. $d\sin\theta = n\lambda$ (either here or in (i) – not both)

1. $d\sin\theta = n\lambda$ (either here or in (i) – not both) θ is greater so λ is greater B1 [1] 2. when n is larger, $\Delta\theta$ is larger M1 so greater in second order A1 [2]

Q28.

5	(a)			squares and 7.5 squares on 3 peaks this range but between 6.0 and 8.0 squares)	B2		
				ead/lag, look at x-axis only and allow ±½ square	В1	[3]	
	(b)		ax / D		C1		
			$\times 10^{-9} = (0.700 \times 10^{-9})$ 2.12 mm	0 ⁻³ x) / 2.75	C1 A1	[3]	
	(c)	(i)	same separation bright areas bright	or (1)	В1		
			dark areas, no char	nge (1)			
			- 15000 - 100 - 10000 - 10000 10000 10000 100	ater' for 1 mark if dark/light areas not discussed) ved (1) any two, 1 each	B2	[3]	
		an	smaller separation	of fringes	В1		
		1,	no change in bright		B1	[2]	
Q29.							
6	(4			edge / aperture / slit /(edge of) obstacle	M		
			ending / spreading award 0/2 for bendi	of wave (into geometrical shadow)	A1		[2]
	(I	i) (c) apparatus e.g.	laser & slit / point source & slit / lamp and slit & slit microwave source & slit			
				water / ripple tank, source & barrier	В1		
			detector e.g.	screen aerial / microwave probe			
				strobe / lamp	В1		
			what is observed	d	B1		[3]
		(i	i) apparatus e.g.	loudspeaker, and slit / edge	B1		

detector e.g. microphone & c.r.o. / ear

what is observed

Q30.

B1

B1

[3]

			ster / propagation of energyM1	
		as a	a result of oscillations / vibrations	[2]
	(b)	(i)	displacement / velocity / acceleration (of particles in the wave)	[1]
		(ii)	displacement etc. is normal to direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')	[1]
		(iii)	displacement etc. along / same direction of energy transfer /	
			travel of wave / propagation of wave(not 'wave motion')	[1]
	(c)	eith	action: suitable object, means of observation	
		0.75	istant source	
			rference: suitable object, means of observation and illumination	
		app	ropriate reference to a dimension for diffraction or nterference	[6]
			Trafal	
			• Liotai	: 11]
O31			· Cotal	: 11]
Q31.		n (ii)	The state of the s	a raaa
Q31. 5			frequency fB1	[1]
6790			The state of the s	a raaa
6790	(a	(ii)	frequency fB1	[1]
6790	(a	(ii)) π r	frequency f	[1] [1]
6790	(a	(ii)) π r) (i)	frequency f	[1] [1] [1]
6790	(a	(ii)) π r) (i)	frequency f	[1] [1] [1]
6790	(a	(ii)) π r) (i)	frequency f	[1] [1] [1] [1]

Q32.

5			A1	[2]	
	(b)		M1 A1	[2]	
	(1,00)	$d \sin \theta = n\lambda$ for $\theta = 90^{\circ}$	C1		
		$1/(650 \times 10^3) = n \times 590 \times 10^{-9}$	M1		
		n = 2.6 number of orders is 2	A1	[3]	
	(d) i	ntensity / brightness decreases (as order increases)	В1	[1]	
Q33.					
5	(a) (i) distance (of point on wave) from rest / equilibrium position	В1	[1]	
	(i	 distance moved by wave energy / wavefront during one cycle of the source or minimum distance between two points with the same phase or between adjacent crests or troughs 	В1	[1]	
	(b) (i) $T = 0.60 \mathrm{s}$	В1	[1]	
	(i	i) $\lambda = 4.0 \text{cm}$	В1	[1]	
	(ii	i) either $v = \lambda / T$ or $v = f\lambda$ and $f = 1/T$ $v = 6.7 \text{cm s}^{-1}$	C1 A1	[2]	
	(c) (i) amplitude is decreasing so, it is losing power	M1 A1	[2]	
	(i	i) intensity ~ (amplitude) ²	C1		
		ratio = $2.0^2 / 1.1^2$ = 3.3	C1 A1	[3]	
Q34.					
3	adjust c.r.o. to produce steady wave of 1 (or 2) cycles / wavelengths on screen measure length of cycle / wavelength λ and note time-base b frequency = 1 / λb (assume b is measured as s cm^{-1} , unless otherwise stated)				
	(If Sta	etement is 'measure T , $f = 1/T$ then last two marks are lost)			
Q35.					

14

Ü	(a)		sultant) displacement is (vector) sum of individual displacements	B1	[2]		
	(b)	(i)	$\lambda = ax/D$ (if no formula given and substitution is incorrect then 0/3) $590 \times 10^{-9} = (1.4 \times 10^{-3} \times x)/2.6$ $x = 1.1 \mathrm{mm}$	C1 C1 A1	[3]		
		(ii)	1. 180° (allow π if rad stated)	A1	[1]		
			2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ² allow $I \sim$ a ² ratio = 3.4 ² / 0.6 ²	C1 C1			
			= 32	A1	[3]		
Q36.							
6 (a) waves overlap (resultant) displacement is the sum of the displacements of each of the waves							
(b) waves travelling in opposite directions overlap / incident and reflected waves overlap (allow superpose or interfere for overlap here) waves have the same speed and frequency							
((c)		ime period = 4 × 0.1 (ms) f = 1 / T = 1 / 4 × 10 ⁻⁴ = 2500 Hz	C1 A1	[2]		
	(the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node \(\lambda/2 = 6.7 \)(cm) 	B1 C1	[1]		
			$v = f\lambda$ $v = 2500 \times 13.4 \times 10^{-2} = 335 \mathrm{m s^{-1}}$	C1 A1	[3]		
			incorrect λ then can only score second mark				
Q37.			· Williams				

5	(a)	transverse waves have vibrations that are perpendicular / normal to the direction of energy travel			В1	
		longitudinal waves have vibrations that are parallel to the direction of energy travel				[2]
	(b)	either		ns are in a single direction applies to transverse waves	М1	
		or or		normal to direction of wave energy travel normal to direction of wave propagation	A1	[2]
	(c)	(i)	1.	amplitude = 2.8 cm	В1	[1]
			2.	phase difference = 135° or 0.75π rad or 34π rad or 2.36 radians (three sf needed) numerical value	М1	
				unit	A1	[2]
		(ii)	an	nplitude = 3.96 cm (4.0 cm)	A1	[1]
Q38.						
4				ass through the elements / gaps / slits in the grating nto geometric shadow	M1 A1	[2]
	(b)	(i)	1.	displacements add to give resultant displacement	В1	
				each wavelength travels the same path difference or are in phase hence produce a maximum	B1 A0	[2]
			2.	to obtain a maximum the path difference must be λ or phase difference 360° / 2π rad	В1	

 λ of red and blue are different

 $N = \sin 61^{\circ} / (2 \times 625 \times 10^{-9}) = 7.0 \times 10^{5}$

(iii) $n\lambda = 2 \times 625$ is a constant (1250)

 $n = 1 \rightarrow \lambda = 1250$ outside visible $n = 3 \rightarrow \lambda = 417$ in visible $n = 4 \rightarrow \lambda = 312.5$ outside visible

(ii) $n\lambda = d \sin \theta$

 $\lambda = 420 \, \text{nm}$

hence maxima at different angles / positions

Q39.

B1

A0

C1

A1

C1

A1 [2]

[2]

[2]

whatsapp: +92 323 509 4443, email: megalecture@gmail.com

4	(a)	incident and reflected waves or these two waves are in opposite directions interfere or stationary wave formed if tube length equivalent to				
		λ / 4, 3 λ / 4, etc.			A1	[3]
	(b)	(i)	1.	no motion (as node) / zero amplitude	В1	[1]
			2.	vibration backwards and forwards / maximum amplitude along length	В1	[1]
		(ii)	λ=	330 / 880 (= 0.375 m)	C1	
			L =	3λ/4	C1	
			L =	3 / 4 × (0.375) = 0.28 (0.281) m	A1	[3]

Q40.

5 (a) travel through a vacuum / free space

B1 [1]

(b) (i) B : name: microwaves wavelength:
$$10^{-4}$$
 to 10^{-1} m B1 C : name: ultra-violet / UV wavelength: 10^{-7} to 10^{-9} m B1 F : name: X -rays wavelength: 10^{-9} to 10^{-12} m B1 [3]

(ii)
$$f = \frac{3 \times 10^8}{500 \times 10^{-9}}$$

$$f = 6(.0) \times 10^{14} \,\text{Hz}$$
 A1 [2]

(c) vibrations are in one direction perpendicular to direction of propagation / energy transfer or good sketch showing this A1 [2]

Q41.

(a) (i) displacement is the distance the rope / particles are (above or below) from the equilibrium / mean / rest / undisturbed position (not 'distance moved') **B1** [1] (ii) 1. amplitude (= 80 / 4) = 20 mm **B1** [1] 2. $v = f\lambda$ or $v = \lambda / T$ C₁ f = 1/T = 1/0.2 (5 Hz) C₁ $v = 5 \times 1.5 = 7.5 \text{ ms}^{-1}$ **A1** [3] (b) point A of rope shown at equilibrium position **B1** same wavelength, shape, peaks / wave moved 1/4 to right **B1** [2] (c) (i) progressive as energy OR peaks OR troughs is/are transferred/moved /propagated (by the waves) **B1** [1] (ii) transverse as particles/rope movement is perpendicular to direction of travel /propagation of the energy/wave velocity **B1** [1] Q42. (a) (i) 1. wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one [1] oscillation/cycle or period (of source) **B1** 2. frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/time В1 [1] (ii) speed = distance / time = wavelength / time period M1 $= \lambda / T = \lambda f$ A0 [1] (b) (i) amplitude = 4.0 mm (allow 1 s.f.) A1 [1] (ii) wavelength = 18 / 3.75 (= 4.8) C1 speed = $2.5 \times 4.8 \times 10^{-2}$ = 12×10^{-2} m s⁻¹ unit consistent with numerical answer, e.g. in cm s⁻¹ if cm used for λ and unit changed on answer line [2] A1 [if 18 cm = 3.5λ used giving speed 13 (12.9) cm s⁻¹ allow max. 1]. (iii) 180° or π rad A1 [1] **B1** (c) light and screen and correct positions above and below ripple tank strobe or video camera [2] **B1**

whith the sale extratte.

whatsapp: +92 323 509 4443, email: megalecture@gmail.com

