Q1. | 4 (| (i) | Use $tan (A \pm B)$ formula to obtain an equation in $tan x$ | | M1 | |------------------------|--------|---|-----------|----------------| | | | State equation $\frac{\tan x + 1}{1 - \tan x} = 4 \frac{(1 - \tan x)}{1 + \tan x}$, or equivalent | | A1 | | | | Transform to a 2- or 3-term quadratic equation | | M1 | | | | Obtain given answer correctly | | A1 | | | | | | [4] | | (ii) | | Solve the quadratic and calculate one angle, or establish that $t = {}^1/_3$, 3 (only) Obtain one answer, e.g. $x = 18.4^\circ \pm 0.1^\circ$ Obtain second answer $x = 71.6^\circ$ and no others in the range | | M1
A1
A1 | | | | [Ignore answers outside the given range] | | [3] | | Q2. | | | | | | 4 | (i) | State answer R = 5 | B1 | | | | 1.7 | Use trigonometric formulae to find α
Obtain answer α = 53.13 $^{\circ}$ | M1
A1 | 3 | | | (ii) | Carry out, or indicate need for, calculation of sin ⁻¹ (4.5/5) | M1 | | | | | Obtain answer 11.0° | A1√ | | | Obtain answer 62.7° ar | | Carry out correct method for the second root e.g. $180^{\circ} - 64.16^{\circ} - 53.13^{\circ}$
Obtain answer 62.7° and no others in the range
[Ignore answers outside the given range.] | M1
A1√ | 4 | | | (iii) | State least value is 2 | B1√ | 1 | | Q3. | | | | | | 4 | V10 16 | se trig formulae to express LHS in terms of cos x and sin x | MI | | | 2 | | se organization of cos 60°, sin 60°, ctc | Mi | | | Obtain given answer | | brain given answer | A1 | 3 | | | | ate or imply answer is $\cos^{-1}(1/\sqrt{3})$ | MO | 1 | | | 0 | blain answer 54 7° | Al | 1 | Q4. | 5 | (i) | State $R = \sqrt{26}$ | B1 | | |---|------|--|-----|-----| | | | Use trig formula to find a | M1 | | | | | Obtain $\alpha = 11.31^{\circ}$ with no errors seen | A1 | [3] | | | | 4 | | | | | (ii) | Carry out evaluation of $\cos^{-1}(\sqrt{\frac{1}{26}}) (\approx 38.3288^{\circ})$ | M1 | | | | | Obtain answer 27.0° | A1 | | | | | Carry out correct method for second answer | M1 | | | | | Obtain answer 310.4° and no others in the range | A1√ | [4] | | | | [Ignore answers outside the given range.] | | | | | | | | | #### Q5. | 5 | Use $\tan^2 x = \sec^2 x - 1$ or $\sin^2 x = 1 - \cos^2 x$ | M1 | | |---|--|------------|-----| | | Obtain 3-term quadratic in sec x or cos x, e.g. $2\sec^2 x + \sec x - 6 = 0$ | A1 | | | | Make reasonable solution attempt at a 3-term quadratic | M1 | | | | Obtain sec $x = \frac{3}{2}$ and sec $x = -2$, or equivalent | A1 | | | | [or $6\cos^2 x - \cos x - 2 = 0$
$\cos x = \frac{2}{3}, -\frac{1}{3}$] | | | | | Obtain answer $x = 48.2^{\circ}$ | A1 | | | | Obtain answer $x = 120^{\circ}$ and no others in the range | A 1 | [6] | | | [Ignore answers outside the given range.] | | | ## Q6. | 3 | (i) | Use $tan(A \pm B)$ formula to obtain an equation in $tan x$ | M1 | | |---|------|---|-----------|-----| | | | Use $\tan 45^{\circ} = 1$ and obtain a correct equation in any form | A1 | | | | | Obtain the given equation correctly | A1 | [3] | | | (ii) | Solve the given quadratic in $tan x$ and evaluate an inverse tangent | M1 | | | | | Obtain a correct answer, e.g. 18.4° | A1 | | | | | Obtain second answer, e.g. 26.6°, and no others in the given interval | A1 | [3] | | | | [Treat the giving of answers in radians as a misread. Ignore answers outside the given in | nterval.] | | ## Q7. | 8 | (i) | Use correct $sin(A - B)$ and $cos(A - B)$ formulae | M1 | | |---|------|---|----|-----| | | | Substitute exact values for sin 30° etc. | M1 | | | | | Obtain given answer correctly | A1 | [3] | | | (ii) | State $\sqrt{3}\sin x = \frac{1}{2}\sec x$ | B1 | | | | | Rearrange to $\sin 2x = k$, where k is a non-zero constant | M1 | | | | | Carry out evaluation of $\frac{1}{2} \sin^{-1} \left(\frac{1}{\sqrt{3}} \right)$ | M1 | | | | | Obtain answer 17.6° | A1 | | | | | Carry out correct method for second answer | M1 | | | | | Obtain remaining 3 answers from 17.6°, 72.4°, 197.6°, 252.4° and no others in the | | | | | | range | A1 | [6] | | | | [Ignore answers outside the given range] | | | # Q8. | 8 | (i) | State or imply $R = \sqrt{52}$ or $2\sqrt{13}$
Use appropriate formula to find α
Obtain 56.31° | B1
M1
A1 | [3] | |---|-------|---|----------------------|-----| | | (ii) | Attempt to find at least one value of $\theta - \alpha$
Obtain one correct value 80.9° of θ
Carry out correct method to find second answer
Obtain 211.7° and no others in range | M1
A1
M1
A1 | [4] | | | (iii) | Obtain 60, following their value of <i>R</i> Obtain 8. Allow quoted solution | B1 v
B1 | [2] | ## Q9. | 8 | (i) | Use | $e \csc\theta = \frac{1}{\sin \theta}$ and $\sec \theta = \frac{1}{\cos \theta}$ | B1 | | |---|------|-----|--|----|-----| | | | | empt to simplify left-hand side | M1 | | | | | | firm given right-hand side $4\cos 2\theta$ with no errors seen | A1 | [3] | | | (ii) | (a) | State or imply $\cos 2\theta = \frac{3}{4}$ | В1 | | | | | | Attempt correct process to find at least one angle | M1 | | | | | | Obtain 20.7° | A1 | | | | | | Obtain 159.3° and no others in range | A1 | [4] | | | | (b) | Recognise as $\frac{4\cos 30^{\circ}}{\sin^2 30^{\circ}}$ | В1 | | | | | | Obtain $8\sqrt{3}$ | B1 | [2] | ## Q10. | 4 | (i) | Use | $\sec^2\theta = 1 + \tan^2\theta$ | B1 | | |---|------|------|---|-----|-----| | | | Atte | empt solution of quadratic equation in $\tan \theta$ | M1 | | | | | Obt | ain $\tan^2 \theta - 12 \tan \theta + 36 = 0$ or equivalent and hence $\tan \theta = 6$ | A1 | [3] | | | (ii) | (a) | Attempt use of $tan(A - B)$ formula | M1 | | | | | | Obtain $\frac{5}{7}$ following their value of tan θ | A1√ | [2] | | | | (b) | Attempt use of tan 2θ formula | M1 | | | | | | Obtain $-\frac{12}{35}$ | A1 | [2] | ## Q11. | 4 | (i) | State or imply $R = 15$
Use appropriate formula to find α
Obtain 53.13° | B1
M1
A1 | [3] | |---|-------|---|----------------|-----| | | (ii) | Attempt to find at least one value of $\theta - \alpha$
Obtain one correct value 68.6° of θ | M1
A1 | | | | | Carry out correct method to find second answer
Obtain 217.7° and no others in range | M1
A1 | [4] | | | (iii) | State 15, following their value of R from part (i) | В1√ | [1] | #### Q12. | 7 | (i) | State $R = \sqrt{29}$ | B1 | | |---|-------|--|----|-----| | | | Use trig formula to find α | M1 | | | | | Obtain $\alpha = 21.80^{\circ}$ with no errors seen | A1 | [3] | | | (ii) | Carry out evaluation of $\sin^{-1}\left(\frac{4}{R}\right) \left(\approx 47.97^{\circ}\right)$ | M1 | | | | | Carry out correct method for one correct answer | M1 | | | | | Obtain one correct answer e.g. 13.1° | A1 | | | | | Carry out correct method for a further answer | M1 | | | | | Obtain remaining 3 answers 55.1°, 193.1°, 235.1° and no others in the range | A1 | [5] | | | (iii) | Greatest value of $10 \sin 2\theta + 4 \cos 2\theta = 2\sqrt{29}$ | M1 | | | | | 1116 | A1 | [2] | ## Q13. | 8 | (i) | Use correct $sin(A - B)$ and $cos(A - B)$ formula | M1 | | |---|------|--|-----|-----| | | | Substitute exact values for cos 30° etc. | M1 | | | | | Obtain given answer correctly | Al | [3] | | | (ii) | State $2\csc x = 3\cot^2 x - 2$ | В1 | | | | | Use $\cot^2 x = \csc^2 x - 1$ | MI | | | | | Attempt solution of quadratic equation in $\csc x$ or $\sin x$ | M1 | | | | | $(3\csc^2 x - 2\csc x - 5 = 0 \text{ or } 5\sin^2 x = 2\sin x - 3 = 0)$ | | | | | | Obtain $\sin x = \frac{3}{5}$ or -1 | Al√ | | | | | Obtain one correct answer for $\sin^{-1}\left(\frac{3}{5}\right)$ | Al | | | | | Obtain remaining 2 answers from 36.9°, 143.1°, 270° and no others in the range | Al | [6] | | | | [Ignore answers outside the given range] | | | | | | SC If only answer given is 270° | B1 | | #### Q14. | 5 | (i) | Use relevant formulae for $\cos (x - 30^{\circ})$ and $\sin (x - 60^{\circ})$ | { | allow | CNE | sign | error] | | Ml* | | 0 | |---|-------|---|----------|---------|------|------|--------|---|----------------|----|---| | | | Use $\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$ | | | | . J | | | M1(dep | *) | | | | (ii) | Collect terms and obtain given answer correctly Carry out correct processes to evaluate a single trig ratio Obtain answer 73.9° | | | ¥ | 40 | | | Al
Ml
Al | 3 | | | | | Obtain second answer 253.9° and no others | | | | | | | A1. | 3 | | | | (iii) | State or imply that $\cos^2 x = \frac{1}{13}$ or $\sin^2 x = \frac{12}{13}$ | | | | | | 2 | B1 | | | | | | Use a relevant trig formula to evaluate $\cos 2x$ | | | | | | | M1 | 43 | | | | | Obtain exact answer $-\frac{11}{13}$ correctly | | | 10. | | • | | Al | 3 | | | | | [Use of only say $\cos x = +\frac{1}{\sqrt{13}}$, probably from a right trial | angle, c | an earn | BIMI | A0.] | | - | 12 | | | #### Q15. | 4 (i) | State answer $R = 2$ | B1 | |-------|---|-----| | | Use trig formula to find α | M1 | | | Obtain answer $\alpha = \frac{1}{3}\pi$ | A1 | | | ~ | [3] | © University of Cambridge Local Examinations Syndicate 2003 | Page 2 | Mark Scheme | Syllabus | Paper | |---------|---|----------|----------| | roper 3 | A AND AS LEVEL - NOVEMBER 2003 | 9709 | 2 | | (ii) | Carry out, or indicate need for, evaluation of $\cos^{-1}(\sqrt{2}/2)$ | | M1 | | | Obtain, or verify, the solution $\theta = \frac{7}{12}\pi$ | | A | | | Attempt correct method for the other solution in range | | | | | i.e. $-\cos^{-1}(\sqrt{2}/2) + \alpha$ | | .M1(dep* | | | Obtain solution $\theta = \frac{1}{12}\pi$: [M1A0 for $\frac{25\pi}{12}$] | | A | | | | | [4 | #### Q16. At any stage, state answer $$x = 90^{\circ}$$ (c.w.o) Write the equation in the form $6\sin x \cos x = \cos x$ Remove factor of $\cos x$ and solve an equation in $\sin x$ for x Obtain answer $x = 9.59^{\circ}$ and no others in the range (9.6° OK: rubric) (Ignore answers outside the given range.) # Q17. | 8 (i) | State answer $R = \sqrt{2}$ | B1 | | |-------|--|----|---| | | Use trigonometric formulae to find α | M1 | | | | Obtain answer $\alpha = \frac{1}{4}\pi$ (NOT 45°, unless 45° = $\frac{\pi}{4}$ ° somewhere, later) | A1 | 3 | | (ii) | Use $\cos \theta$ + $\sin \theta = \sqrt{2} \cos(\theta - \frac{1}{4}\pi)$ to justify the given answer | В1 | 1 | | (iii) | Differentiate using the quotient or product rule | M1 | | | | Obtain derivative in any correct form | A1 | | | | Obtain the given answer correctly | A1 | 3 | | (iv) | Convert integrand to give $\int_{-2}^{1} \sec^2(\theta - \frac{\pi}{4}) d\theta$ | B1 | | | | Integrate, to obtain function $\frac{1}{2}$ tan $(\theta - \frac{\pi}{4})$ | M1 | | | | Substitute (correct) limits correctly, to obtain given result | A1 | 3 | | | | | | ## Q18. | 3 | (ii) | State answer $R = 11$ | BI | | |---|------|---|----------|---| | | | List trig formula to find or | MI
AL | | | | | Obtain a = 22.62° | AL | 3 | | | (ii) | Carry not evaluation of $\cos^{-1}(\frac{10}{15})$ ($\approx 39.715.7$) | WI | | | | | Obtain answer 17.1° | A1 | | | | | Carry out correct method for second answer | MI | | | | | Obtain maswer 297.7° and no others in the range | ALC | 4 | | | | Henore answers outside the given range 1 | | | ## Q19. | 4 | (i) Use tan(A ± B) formula to express LHS in terms of tan x | MI | | |---|--|----------|---| | | Obtain $\frac{\tan x + 1}{1 - \tan x} - \frac{1 - \tan x}{1 + \tan x}$, or equivalent | Al | | | | Make relevant use of the tan 2A formula Obtain given answer correctly | MI
Al | á | | | (ii) State or imply $2\epsilon = \tan^{-1}(2/2)$ | MI | | | | Obtain answer $x = 22 \frac{1}{2}$ | Al | | | | Obtain answer $x = 112 \frac{1}{3}$ and no others in range | A) | 1 | ## Q20. | 6 | J | State answer $R = 17$, allow $\sqrt{289}$
Use trig formula to find α
Obtain $\alpha = 61.93^{\circ}$, (1.08 radians) | B1
M1
A1 | [3] | |------|-----|---|-----------------------|-----| | | (| Carry out evaluation of $\sin^{-1}(14/17) \approx 55.44^{\circ}$, or equivalent Obtain answer 117.4°, (2.06 radians) Carry out correct method for second answer Obtain answer 186.5° and no others in the range (3.255 radians) Ignore answers outside the given range.] | M1
A1
M1
A1√ | [4] | | Q21. | | | | | | 4 | Si | se correct $sin(A + B)$ and $cos(A + B)$ formulae abstitute exact values for $sin 30^{\circ}$ etc. btain given answer correctly | M1
M1
A1 | [3] | | (| 0 | blue for x
btain answer $x = 10.9^{\circ}$
btain second answer $x = -169.1^{\circ}$ and no others in the range
gnore answers outside the given range.] | M1
A1
A1 | [3] | | Q22. | | | | | | 4 | (1 | Use trig formulae to express equation in terms of $\sin x$ and $\cos x$
Use $\cos 60^\circ = \frac{1}{2}$ and $\sin 60^\circ = \frac{\sqrt{3}}{2}$, or equivalent
Obtain equation in $\sin x$ and $\cos x$ in any correct form
Obtain $\tan x = \sqrt{3}/5$, or 0.3464 , or equivalent | M1
M1
A1
A1 | [4] | | | (i | Obtain answer $x = 19.1^{\circ}$
Obtain answer $x = 199.1^{\circ}$ and no others in the range [ignore answers outside the given range.] | B1
B1√ | [2] | | Q23. | | | | | | 6 | (i | State answer $R = 5$
Use trig formula to find a
Obtain $a = 53.13^{\circ}$ | B1
M1
A1 | [3] | | | (ii | Description (1.5/5) ≈ 25.84° Obtain answer 79.0° Carry out correct method for second answer Obtain answer 27.3° and no others in the given range [Treat the giving of answers in radians as a misread. Ignore answers outside the given range.] | M1
A1
M1
A1√ | [4] | Q24. | 5 | Use correct trig identity to obtain a quadratic in $\cot \theta$ or $\tan \theta$ | M1 | | |---|--|-----|-----| | | Solve the quadratic correctly | A1 | | | | Obtain $\tan \theta = \frac{1}{2}$ or $-\frac{2}{3}$ | A1√ | | | | Obtain answer 26.6° or 146.3° | A1 | | | | Carry out correct method for second answer from either root | M1 | | | | Obtain remaining 3 answers from 26.6°, 146.3°, 206.6°, 326.3° and no others in the range | A1 | [6] | | | [Ignore answers outside the given range] | | | #### Q25. | 6 | (i) | State $R = \sqrt{5}$ | B1 | | |---|------|--|----------|-----| | | | Use trig formula to find α
Obtain $\alpha = 26.57^{\circ}$ with no errors seen | M1
A1 | [3] | | | (ii) | Carry out evaluation of $\sin^{-1}\left(\pm 0.4\right) (\approx \pm 10.3048^{\circ})$ | M1 | | | (ii) | Carry out evaluation of $\sin^{-1} \left(\frac{\pm 0.4}{\sqrt{5}} \right) (\approx \pm 10.3048^{\circ})$ | M1 | | |------|---|----|-----| | | Obtain answer 16.3° | A1 | | | | Carry out correct method for second answer | M1 | | | | Obtain answer 216.9° and no others in the range | A1 | [4] | ## Q26. 8 (i) State $$R = \sqrt{34}$$ B1 Use trig formula to find α M1 Obtain $\alpha = 30.96^{\circ}$ with no errors seen A1 [3] (ii) Carry out evaluation of $\cos^{-1}\left(\frac{\pm 4}{R}\right)$ ($\approx 46.6861^{\circ}$ or 313.3139°) M1 Obtain answer 15 .7° A1 Carry out correct method for second answer M1 Obtain answer 282.3° or 282.4° and no others in the range A1 [4] #### Q27. | 5 | Use trig identity correctly to obtain a quadratic in $\tan 2\theta$ | M1 | | |---|---|----|-----| | | Solve the quadratic correctly | M1 | | | | Obtain $\tan 2\theta = 1$ or $-\frac{4}{5}$ | A1 | | | | Obtain one correct answer | A1 | | | | Carry out correct method for second answer from either root | M1 | | | | Obtain remaining 3 answers from 22.5°, 112.5°, 70.7°, 160.7° and no others in the range | A1 | | | | [Ignore answers outside the given range] | | [6] | #### Q28. | 3 | Make relevant use of the $\cos 2\theta$ formula | M1 | | |---|--|-------|----| | | Obtain a correct quadratic in $\cos \theta$ | A1 | | | | Solve a quadratic in $\cos \theta$ | M1 | | | | Obtain answer $\theta = 60$ and no others in the range | A1 [4 | 4] | | | (Ignore answers outside the given range) | | | #### Q29. - 8 (a) Use $\tan (A + B)$ formula to obtain an equation in $\tan B$ State equation $\frac{t + \tan B}{1 t \tan B} = 4$, or equivalent A1 Solve to obtain $\tan B = \frac{4 t}{1 + 4t}$ A1 [3] - (b) State equation $2\left(\frac{\tan 45 \tan x}{1 + \tan 45 \tan x}\right) = 3 \tan x$, or equivalent Transform to a quadratic equation Obtain $3 \tan^2 x + 5 \tan x 2 = 0$ (or equivalent) Solve the quadratic and calculate one angle, or establish that $\tan x = \frac{1}{3}$, -2 Obtain one answer, e.g. $x = 18.4^\circ$ Obtain other 3 answers 116.6° , 198.4° , 296.6° and no others in range A1 [6] #### Q30. (i) State $R = \sqrt{10}$ 7 **B**1 Use trig formula to find α M1 Obtain $\alpha = 18.43^{\circ}$ with no errors seen A1 [3] (ii) Carry out evaluation of $\cos^{-1}\left(\frac{2}{R}\right) \left(\approx 50.77^{\circ}\right)$ M1Carry out correct method for one correct answer M1 Obtain one correct answer e.g. 34.6° A1 M1 Carry out correct method for a further answer Obtain remaining 3 answers 163.8°, 214.6°, 343.8° and no others in the range A1 [5] #### Q31. 3 Use trig identity correctly to obtain a quadratic in cosec θ or $\sin \theta$ M1 Solve the quadratic correctly Obtain $\sin \theta = \frac{1}{4}$ or $-\frac{2}{3}$ A1 Obtain one correct answer Carry out correct method for second answer from either root Obtain remaining 3 answers from 14.5, 165.5, 221.8, 318.2 and no others in the range [Ignore answers outside the given range] [6] #### Q32. | 2 | Use $\sin 2\theta = 2\sin \theta \cos \theta$ | B1 | | |---|---|----|-----| | | Simplify to obtain form $c_1 \sin^2 \theta = c_2$ or equivalent | M1 | | | | Find at least one value of θ from equation of form $\sin \theta = k$ | M1 | | | | Obtain 35.3° and 144.7° | A1 | [4] | #### Q33. | 7 | (i) | Use $\sec^2 \alpha = 1 + \tan^2 \alpha$ | B1 | | |---|-----|---|----|-----| | | | Confirm $3 \tan^2 \alpha + 4 \tan \alpha - 4 = 0$ | B1 | | | | | Solve quadratic equation for $\tan \alpha$ | M1 | | | | | Obtain, finally, $\tan \alpha = \frac{2}{3}$ only | A1 | [4] | (ii) State or imply $$\tan(\alpha + \beta) = \frac{1}{6}$$ State $\frac{\frac{2}{3} + \tan \beta}{1 - \frac{2}{3} \tan \beta} = \frac{1}{6}$, following their value of $\tan \alpha$ B1 Solve equation of form $\frac{a + bt}{c + dt}$ for t Obtain $\tan \beta = -\frac{9}{20}$ A1 Conclude with $$\cot \beta = -\frac{20}{9}$$ or exact equivalent A1 [5] #### Q34. | 7 | (i) | State or imply $R = 13$ | B1 | | |---|------|---|-----|-----| | | | Use appropriate formula to find α | M1 | | | | | Obtain 67.38° | A1 | [3] | | | (ii) | Attempt to find at least one value of $\cos^{-1} \frac{8}{13}$ or $\cos^{-1} \frac{8}{R}$ | M1 | | | | | Obtain one correct value of θ (240.6 or 344.6) | A1 | | | | | Carry out correct method to find second value of θ within the range | DM1 | | | (iii) | State or imply $7 + 13\cos(\frac{1}{2}\phi + 67.38)$ following their answers from part (i) | B1√^ | | |-------|--|------|-----| | | State 20 | B1 | | | | Attempt to find ϕ for which $\cos(\frac{1}{2}\phi + 67.38) = 1$ | M1 | | | | Obtain 585.2 | A1 | [4] | [4] ## P3 (variant1 and 3) Obtain second correct value (344.6 or 240.6) Q1. | 2 | O
M
O
O | btain
lake i
btain
btain
btain | rrect cos $2A$ formula and obtain an equation in $\sin\theta$ $4\sin^2\theta + \sin\theta - 3 = 0$, or equivalent reasonable attempt to solve a 3-term quadratic in $\sin\theta$ answer 48.6° answer 131.4° and no others in the given range answer 270° and no others in the given range the giving of answers in radians as a misread. Ignore answers outside the given range.] | M1
A1
M1
A1
A1 √ | [6] | |-----|----------------------|--|---|------------------------------|-----| | Q2. | | | | | | | 3 | Ob
So
Ob
Ob | otain
olve a
otain
otain | t to use $\tan(A \pm B)$ formula and obtain an equation in $\tan x$ 3-term quadratic $2 \tan^2 x + 3 \tan x - 1 = 0$, or equivalent 3-term quadratic and find a numerical value of x answer 15.7° answer 19.3° and no others in the given interval answers outside the given interval. Treat answers in radians, 0.274 and 2.08 , as a misrea | M1
A1
M1
A1
A1 | [5] | | Q3. | | | | | | | 9 | (i) | Exp | ress $\cos 4\theta$ as $2 \cos^2 2\theta - 1$ or $\cos^2 2\theta - \sin^2 2\theta$ or $1 - 2 \sin^2 2\theta$
ress $\cos 4\theta$ in terms of $\cos \theta$
ain $8 \cos^4 \theta - 8 \cos^2 \theta + 1$
$\cos 2\theta = 2 \cos^2 \theta - 1$ to obtain given answer $8 \cos^4 \theta - 3$ AG | B1
M1
A1
A1 | [4] | | | (ii) | | State or imply $\cos^4 \theta = \frac{1}{2}$
Obtain 0.572
Obtain -0.572 | B1
B1
B1 | [3] | | | | (b) | Integrate and obtain form $k_1\theta + k_2 \sin 4\theta + k_3 \sin 2\theta$
Obtain $\frac{3}{8}\theta + \frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta$
Obtain $\frac{3}{32}\pi + \frac{1}{4}$ following completely correct work | M1
A1
A1 | [3] | | Q4. | | | | | | | 4 | (i) | Ob | e $tan(A \pm B)$ formula correctly at least once and obtain an equation in $tan\theta$ tain a correct horizontal equation in any form tan $tan\theta$ to $tan\theta$ = $tan\theta$ = $tan\theta$ throughout tain the given equation correctly | M1
A1
M1
A1 | [4] | | | (ii) | | $k = 3\sqrt{3}$ and obtain $\tan^2 \theta = \frac{1}{11}$ | B1 | | | | | Ob
[Ig | tain answer 16.8° tain answer 163.2° nore answers outside the given interval. Treat answers in radians (0.293 and 2.85) as a sread.] | B1√
B1√ | [3] | Q5. | 6 | (i) | Use $\tan (A + B)$ and $\tan 2A$ formulae to obtain an equation in $\tan x$
Obtain a correct equation in $\tan x$ in any form
Obtain an expression of the form $a \tan^2 x = b$
Obtain the given answer | M1
A1
M1
A1 | [4] | |-----|-------------------------------|---|--|------------| | | (ii) | Substitute $k = 4$ in the given expression and solve for x . Obtain answer, e.g. $x = 16.8^{\circ}$. Obtain second answer, e.g. $x = 163.2^{\circ}$, and no others in the given interval [Ignore answers outside the given interval. Treat answers in radians as a misread and deduct A1 from the marks for the angles.] | M1
A1
A1 | [3] | | | (iii | Substitute $k = 2$, show $\tan^2 x < 0$ and justify given statement correctly | B1 | [1] | | Q6. | | | | | | 9 | | State or imply R = 5 Use relevant trigonometry to find α Obtain α = 0.6435 (a) Carry out appropriate method to find one value in given range Obtain 1.80 Carry out appropriate method to find second value in given range Obtain 5.77 and no other value (b) Express integrand as k sec²(θ – their α) for any constant k Integrate to obtain result k tan(θ – their α) Obtain correct answer 2 tan(θ – 0.6435) | B1
M1
A1
M1
A1
M1
A1 | [3]
[4] | | Q7. | | | | | | 3 | Ob
Sol
Ob
Ob
[Ig: | e correct tan $2A$ formula and $\cot x = 1/\tan x$ to form an equation in $\tan x$ tain a correct horizontal equation in any form ve an equation in $\tan^2 x$ for x tain answer, e.g. 40.2° tain second answer, e.g. 139.8° , and no other in the given interval nore answers outside the given interval.] eat answers in radians as a misread and deduct A1 from the marks for the angles.] 8: For the answer $x = 90^\circ$ give B1 and A1 for one of the other angles.] | M1
A1
M1
A1
A1√ | [5] | Q8. | 3 | Attempt use of $cos(A + B)$ formula to obtain an equation in $cos \theta$ and $sin \theta$ | M1 | | |---|---|----|-----| | | Use trig formula to obtain an equation in tan θ (or cos θ , sin θ or cot θ) | M1 | | | | Obtain $\tan \theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$) | A1 | | | | Obtain answer $\theta = 9.9^{\circ}$ | A1 | | | | Obtain $\theta = 189.9^{\circ}$, and no others in the given interval | A1 | [5] | | | [Ignore answers outside the given interval. Treat answers in radians as a misread (0.173, 3.31).] | | | | | [The other solution methods are $via \cos \theta = \pm (4 + \sqrt{3}) / \sqrt{1 + (4 + \sqrt{3})^2}$] or | | | | | $\sin \theta = \pm 1/\sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}.$ | | | ## Q9. | 8 | (i) | Obt | tain or imply $R = 4$ | B1 | | |---|------|-----|---|------------|-----| | | | Use | e appropriate trigonometry to find α | M1 | | | | | Obt | tain $\alpha = 52.24$ or better from correct work | A1 | [3] | | | (ii) | (a) | State or imply $\theta - \alpha = \cos^{-1}(-4 \div R)$ | M 1 | | | | | | Obtain 232.2 or better | A1 | [2] | | | | (b) | Attempt at least one value using $\cos^{-1}(3 \div R)$ | M1 | | | | | | Obtain one correct value e.g. ± 41.41° | A1 | | | | | | Use $\frac{1}{2}\theta - \alpha = \cos^{-1}\left(\frac{3}{R}\right)$ to find θ | M1 | | | | | | Obtain 21.7 | A1 | [4] | #### Q10. | 6 | (i) | State or imply $R = \sqrt{10}$
Use trig formulae to find α
Obtain $\alpha = 71.57^{\circ}$ with no errors seen
[Do not allow radians in this part. If the only trig error is a sign error in $\cos(x - \alpha)$ give M1A0] | B1
M1
A1 | [3] | |---|------|--|-----------------------------|-----| | | (ii) | Evaluate $\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (Allow 50.7° here) Carry out an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 180^{\circ}$ Obtain an answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$ Use an appropriate method to find another value of 2θ in the above range Obtain second angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range [Ignore answers outside the given range.] [Treat answers in radians as a misread and deduct A1 from the answers for the angles.] | B1√
M1
A1
M1
A1 | [5] | | | | [SR: The use of correct trig formulae to obtain a 3-term quadratic in tan θ , sin 2θ , $\cos 2\theta$, or tan 2θ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must | | | ## Q11. reject the spurious roots to get the final A1).] | | 150 | | I a contract to the t | 1 | |---|------|---|--|-----| | 3 | (i) | State or imply $R = 17$ | B1 | | | | | Use correct trigonometric formula to find α | M1 | | | | | Obtain 61.93° with no errors seen | A1 | [3] | | | (ii) | Evaluate $\cos^{-1} \frac{12}{R}$ (= 45.099) | M1 | | | | | Obtain answer 107.0° | A1 | | | | | Carry out correct method for second answer | M1 | | | | | Obtain answer 16.8° and no others between 0° and 360° | A 1 | [4] | ## Q12. | 3 | Attempt use of $\sin (A + B)$ and $\cos (A - B)$ formulate to obtain an equation in $\cos \theta$ and $\sin \theta$ | M1 | | |---|--|----|-----| | | Obtain a correct equation in any form | A1 | | | | Use trig. formula to obtain an equation in tan θ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$) | M1 | | | | Obtain $\tan \theta = 0$, or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$) | A1 | | | | Obtain answer $\theta = 105.9^{\circ}$, and no others in the given interval [Ignore answers outside the given material] | A1 | [5] | ## Q13. | 2 | (i) | State or imply $R = 25$
Use correct trigonometric formula to find α
Obtain 16.26° with no errors seen | B1
M1
A1 | [3] | |---|------|---|----------------|-----| | | (ii) | Evaluate of $\sin^{-1} \frac{17}{R}$ (= 42.84°)
Obtain answer 59.1° | M1
A1 | [2] | ## Q14. | 7 | (i) | Use $\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$ | B1 | | |---|-------|---|------|-----| | | | Use $\sin 2\theta = 2\sin \theta \cos \theta$ and to form a horizontal equation in $\sin \theta$ and $\cos \theta$ or | 2020 | | | | | fractions with common denominators | M1 | | | | | Obtain given equation $2\sin\theta + 4\cos\theta = 3$ correctly | Al | [3] | | | (ii) | State or imply $R = \sqrt{20}$ or 4.47 or equivalent | B1 | | | | () | | 141 | | | | | Use correct trigonometry to find α | M1 | | | | | Obtain 63.43 or 63.44 with no errors seen | A1 | [3] | | | (iii) | Carry out a correct method to find one value in given range | MI | | | | | Obtain 74.4° (or 338.7°) | A1 | | | | | Carry out a correct method to find second value in given range | M1 | | | | | | | | | | | Obtain 338.7° (or 74.4°) and no others between 0° and 360° | Al | [4] | | | | | | | # Q15. | 1 | (i) | State $\sin 2\alpha = 2\sin \alpha \cos \alpha$ and $\sec \alpha = 1/\cos \alpha$
Obtain $2\sin \alpha$ | B1
B1 | [2] | |---|------|---|----------|-----| | | (ii) | Use $\cos 2\beta = 2\cos^2 \beta - 1$ or equivalent to produce correct equation in $\cos \beta$
Solve three-term quadratic equation for $\cos \beta$ | B1
M1 | | | | | Obtain $\cos \beta = \frac{1}{3}$ only | A1 | [3] | ## Q16. | 3 | (i) | Use $tan(A \pm B)$ formula and obtain an equation in $tan x$ | | | |---|------------|---|----|---| | | | Using $\tan 60^{\circ} = \sqrt{3}$, obtain a horizontal equation in $\tan x$ in any correct form | A1 | | | | | Reduce the equation to the given form | A1 | 3 | | | (ii) | Solve the given quadratic for $\tan x$ | M1 | | | | | Obtain a correct answer, e.g. $x = 21.6^{\circ}$ | A1 | | | | | Obtain a second answer, e.g. $x = 128.4^{\circ}$, and no others | A1 | 3 | | | | [Ignore answers outside the given interval. Treat answers in radians as a misread (0.377, 2.24).] | | | # Q17. | 8 | (i) | Use $\sin(A+B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ | M1 | | |---|-----|---|----|-----| | | | Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$ | M1 | | | | | Obtain a correct expression in terms of $\sin \theta$ in any form | A1 | | | | | Obtain the given identity | A1 | [4] | | | | [SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and $\cos2\theta$, | | | | | | then M1A1 for expressing in terms of $\sin\theta$ and $\sin\theta$ only, or in terms | | | | | | of $\cos \theta$, $\sin \theta$, $\cos 2\theta$ and $\sin 2\theta$, then A1 for obtaining the given identity.] | | | © Cambridge International Examinations 2014 | Page 6 | Mark Scheme | Syllabus | Paper | |--------|---|----------|-------| | | Cambridge International A Level - October/November 2014 | 9709 | 31 | (ii) Substitute for x and obtain the given answer B1 [1] (iii) Carry out a correct method to find a value of x M1 Obtain answers 0.322, 0.799, -1.12 A1 + A1 + A1 [Solutions with more than 3 answers can only earn a maximum of A1 + A1.] #### Q18. | 4 | (i) | Either | Use $\cos(A \pm B)$ correctly at least once | M1 | | |---|------|----------|--|----|-----| | | 17 | | State correct complete expansion | A1 | | | | | | Confirm given answer $\cos \theta$ with explicit use of $\cos 60^{\circ} = \frac{1}{2}$ | A1 | | | | | | SR: "correct" answer from sign errors in both expansions is B1 only | | | | | | Or | Use correct $\cos A + \cos B$ formula | M1 | | | | | | State correct result e.g. $2\cos\left(\frac{2\theta}{2}\right)\cos\left(\frac{-120}{2}\right)$ | A1 | | | | | | Confirm given answer $\cos \theta$ with explicit use of $\cos(\pm 60^{\circ}) = \frac{1}{2}$ | A1 | [3] | | | (ii) | State or | imply $\frac{\cos 2x}{\cos x} = 3$ | B1 | | State or imply $\frac{1}{\cos x} = 3$ Obtain equation $2\cos^2 x - 3\cos x - 1 = 0$ B1 Solve a three-term quadratic equation for $\cos x$ M1 Obtain $\frac{1}{4}(3-\sqrt{17})$ or exact equivalent and, finally, no other A1 [4]