whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

2.11 EXERCISE 1 – Analytical Techniques

- 1. a) Low resolution mass spectrometry identified the molecular ion peak of an organic molecule as 86. Suggest three possible molecular formulae for the molecule.
 - b) High resolution mass spectrometry identified the molecular ion peak of the organic molecule as 85.998. Deduce the molecular formula of the molecule, given the following relative isotopic masses:

isotope	Relative isotopic mass
¹⁶ O	15.994
^{12}C	12.000
$^{1}\mathrm{H}$	1.008

2. Identify the bonds responsible for all the peaks in the non-lingerprint region of the following infra-red spectra, and hence state the functional group present:

3. Three compounds A, B and C, all with molecular formula $C_4H_8O_2$, are found to have very different infra-red spectra. All three spectra contain a sharp peak at 1700 cm⁻¹, but the infra-red spectrum of A contains a broad peak at 2500 – 3000 cm⁻¹, the infra-red spectrum of B contains no broad peaks, and the infra-red spectrum of C contains a broad peak at 3000 – 3300 cm⁻¹. Suggest possible structures for A, B and C.

Page 1 of 2

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

4. Suggest how infra-red spectroscopy could be used to determine the exact structure of a molecule containing only C-H absorptions and a C=O absorption in the region 1500 – 3500 cm⁻¹.

Page 2 of 2