

TOPIC 7 HW MS

1. (a) (i) Molecule/compound/consists/composed/made up of hydrogen and carbon only (1) (ii) C_nH_{2n+2} (1) (iii) C₆H₁₄ only (1) Do not credit structures alone or in addition. 3 (b) Chemically similar / react in same way / same chemistry Differ by CH₂ gradation in physical properties OR specified trend e.g. b.p. same functional group Any 2, 2 marks 1 + 1 Not same molecular formula (c) (i) Same molecular formula (1) NOT same Mr different structural formula / structures (*) (or atoms arranged in different way) NOT different spatial arrangements Only credit M2 if M1 correct 2-methylpentane (1) (ii) 2,2-dimethylbutane 🕼 (iii) either order Isomer 4 CH₃ -CH-CH₂CH₃ (1) - CHCH 3 (1) CH₃ OR correct condensed / structural formula Penalise "sticks" once Penalise absence of vertical bonds once penalise badly drawn bonds once (vertical

between H atoms)

1

Page 1 of 14

6

MEGA LECTURE

(d) (i) M1 % by mass of H = 7.7(0)% (1)
M2 mol H = 7.70 / 1 = 7.70
mol C = 92.3 / 12 = 7.89 (1)
M3 (ratio 1:1) CH
Credit variations for M2 e.g. 78 x
$$\frac{77}{100} = 6$$

and $\frac{78}{12} \times \frac{92.3}{100} = 6$
Correct answer = 3 marks
(ii) (CH has empirical mass of 13 and = 6) C,H₄ (1)
Correct answer 1 mark
4
[15]
2. (a) % O = 21.6 % (1)
If % O not calculated only M2 available
 $\frac{64.9}{12}$ $\frac{13.5}{1}$ $0.\frac{21.6}{16}$ (1)
= 5.41 = 13.5 = 1.35
Ratio: 4 : 10: 1 (C,H₄O) (1)
If arithmetic error in any result lose M3
If percentage composition calculation done zero
 $CH_3 = \frac{C}{C} = CH_2CH_3$ $CH_3 = \frac{C}{C} = CH_2OH$
(ii)
Isomer 3 Isomer 4
Penalise missing bonds / incorrect bonds once
per paper 2
[5]

www.youtube.com/megalecture

Page 2 of 14

MEGA LECTURE

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

Page 3 of 14

(iii) $C_{10}H_{22} + 5\frac{1}{2}O_2$ 10C + 11H₂O (or double this equation)

1

Page 4 of 14

MEGA LECTURE

(c) (i)
$$\frac{1}{2}N_{2} + \frac{1}{2}O_{2}$$
 NO
(or double this equation)
(ii) Platinum or palladium or rhodium
(iii) $2CO + 2NO$ $2CO_{2} + N_{2}$ or
 $2NO$ $N_{2} + O_{2}$ or
(ignore extra O_{2} molecules provided the
equation balances)
 $C + 2NO$ $CO_{2} + N_{2}$
(or half of each of these equations)
 $C_{2}H_{10} + 25NO$ $8CO_{2} + 12\frac{1}{2}N_{2} + 9H_{2}O$
(or double this equation)
1 [10]
5. 1(-)bromobutane
(C-C bonds must be clear where drawn)
1 [2]

www.youtube.com/megalecture

Page 5 of 14

MEGA LECTURE

6.	(a)	Correct structure for CF2BrCF2Br drawn out		
		(penalise "FI" for fluorine)	1	
	(b)	 (i) 2-bromo-2-chloro-1,1,1-trifluoroethane OR 1-bromo-1-chloro-2,2,2-trifluoroethane (insist on <u>all</u> numbers, but do not penalise failure to use alphabet) (accept "flourine" and "cloro" in this instance) 	1	
			I	
		(ii) 197.4 only <i>(ignore units)</i>		
			1	
		(iii) (57/197.4 × 100) = 28.9% OR 28.88%		
		(credit the correct answer independently in part (d)(iii), even if (d)(ii) is blank or incorrectly calculated, but mark <u>consequential on part (d)</u> <u>(ii),</u> if part (d)(ii) is incorrectly calculated, accepting answers to 3sf or 4sf only) (penalise 29% if it appears alone, but not if it		
		follows a correct answer)		
		(do not insist on the % sign being given) (the percentage sign is not essential here, but		
		penalise the use of units e.g. grams)	1	[4]
7.	(8	a) Single bonds <u>only</u> /no double or multiple bonds;	1	
		Contains carbon and hydrogen <u>only;</u>		
		C and H <u>only</u> not C and H molecules		
			1	
		Alkanes;	1	

6

Page 6 of 14

MEGA LECTURE

(b)	(1) Fractions or hydrocarbons or compounds have different boiling points/ separation depends on bp; Ignore mp and vdw	1
	(2) bp depends on size/ <i>M</i> / chain length; If refer to bond breaking/cracking/ blast furnace/oxygen/air 2 max	1
	(3) Temp gradient in <u>tower or column</u> / cooler at top of <u>column</u> or vice versa; <i>QWC</i>	1
	(4) Higher bp / larger or heavier molecules at bottom (of column) or vice versa; Not increasing size of fraction Not gases at top	1
(c)	Large molecules or compounds or long chain nydrocarbons (broken) into <u>smaller</u> molecules or compounds or smaller chain hydrocarbons; <i>QWC</i>	
	Zeolite or aluminosilicate (catalyst);	1
	$C_{14}H_{30}$ $C_{8}H_{18} + C_{6}H_{25}$	1
	Smaller chain molecules are in more demand or have higher value or vice versa;	
C ₈ H	4 → Insufficient to say more useful/have more uses $_{18} + 8\frac{1}{2} O_2 = 8CO + 9H_2O;$	1
	Allow multiples Rh/ Pd/Pt/Ir or in words;	1
	Penalise contradiction of name and symbol	1
	$2CO + 2NO$ $2CO_2 + N_2 / 2CO + O_2$ $2CO_2$; Allow multiples	

(d)

www.youtube.com/megalecture Page 7 of 14

1

8

Page 8 of 14

MEGA LECTURE

	(e)	car less powerful/ car stops/ reduced performance/ won't run smoothly/ can't accelerate;	
		Not incomplete combustion or bad effect on engine	
		Not doesn't go as far.	
		1	
		Test it (before sale) /Quality control etc;	
		1	
	(f)	(compounds with) same molecular formula / same no and type of atoms;	
		Not atoms/elements with same molecular formula.	
		If same <u>chemical</u> formula, can allow M2	
		And different structure/ structural formula;	
		M2 consequential on M1 Allow displayed formula for M2	
		2,2,4-trimethylpentane;	
		Only (but allow numbers in any order)	
			[20]
		D.Y	
8.	(a)	General formula;	
		Chemically similar	
		Same functional group;	
		Trend in onysical properties eg inc bp as <i>M</i> increases;	
		Contains an additional CH₂ group;	
		Any two points.	

2 max

www.youtube.com/megalecture

MEGA LECTURE

(b) (i)

(i)	,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		<u>All</u> bonds and atoms must be shown.	1
		C₃H₅CI; Allow any order of elements. Do not allow EF consequential on their wrong displayed formula.	1
	<i>(</i>)		
	(ii)	Same Molecular formula/ both C ₆ H ₁₂ C ₁₂ / same number and of atoms;	d type 1
		Different structural formula/ different structure/ different displayed formula;	
		<i>Not atoms or elements with same MF CE=</i> 0.	
		Allow different C skeleton. If same <u>chemical</u> formula can allow M2 only. M2 insufficient to say atoms arranged differently.	
		M2 consequential on M1.	1
(c)	$M_{\rm r} =$	228 for total reactants;	
$\frac{155 \times 100}{228}$			1
		= 67.98%;	
		Allow 67.98 or 68.0 or 68%.	1
(d)	(i)	Bp increases with increasing (molecular) size/ increasing increasing no of electrons/increasing chain length;	<i>M</i> ,/
		Atoms CE =0.	1
		Increased VDW forces (between molecules) (when large molecule)/ bigger IMFs; QWC	r
		Not dipole-dipole or hydrogen bonds.	
		If VDW between atoms in $M2 CE = 0$.	1
	(ii)	Fractional distillation/ fractionation/ GLC/chromatography	,

10

www.youtube.com/megalecture

[11]

1

www.megalecture.com

Page 11 of 14

9.

10.

(i)

M1 E isomer M2 Z Isomer н H₅C₂ H₅C₂ 2He Award 1 mark if both correct stereoisomers but in the wrong places Accept no other alkenes. Be reasonably lenient on the bonds to ethyl (or to CH_2CH_3) since the question is about E and Z positions but penalise once only if connection is clearly to the CH₃ of CH₂CH₃ Accept linear structures 2 (ii) (Compounds / molecules with) the same structural formula M1 Penalise M1 if "same structure" M2 with atoms/bonds/groups arranged differently in space Ignore references to "same molecular formula" or "same empirical formula" or any reference to "displayed formula" OR atoms/bonds/groups that have different spatial arrangements / different orientation. Mark independently 2 [4] (a) Contains a C=C OR a double bond 1 (b)

12

www.youtube.com/megalecture

www.youtube.com/megalecture

Page 13 of 14

14. B

[1]

Page 14 of 14