TOPIC 6 TEST MS
M1.(a) (i) $\quad 3 \mathrm{CuS}(\mathrm{s})+8 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow 3 \mathrm{CuSO}_{4}(\mathrm{aq})+\mathbf{8 N O}(\mathrm{g})+\mathbf{4} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(ii) (+) 5
(+) 2
(iii) $4 \mathrm{H}_{+}+\mathrm{NO}_{3}+\mathbf{3 e} \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}$

Ignore state symbols.
Credit multiples of this equation only.
Ignore absence of charge on the electron.
(iv) $\mathrm{S}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{SO}_{4}^{2}+\mathbf{8 e}+\mathbf{8} \mathrm{H}^{+}$

Ignore state symbols.
Credit multiples of this equation only.
Ignore absence of charge on the electron.
2. (i) $\mathrm{Cu}^{-} \mathrm{Cu}_{2+}+2 \mathrm{e}-$
(ii)

1
3. (a)
(i) $\mathrm{SrCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
$\mathrm{SrSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$ Allow multiples, including fractions. Allow ionic equations.
Lose this mark if any of the state symbols are missing or incorrect.
(ii) Add nitric acid to the mixture (until in excess)

Do not allow any suggestion that the solution is an emetic.

Filter (to isolate strontium sulfate)
(b) Insoluble barium sulfate is formed

Allow 'removes barium ions as a precipitate'.
(c) Add silver nitrate, then dilute ammonia (solution) M1

Do not allow answers which imply silver nitrate and ammonia are added at the same time.
Allow 'add silver nitrate, then concentrated ammonia (solution)'.
Can score M1 in the answer for M3

Cream precipitate M2
Allow 'off white precipitate'.

No visible change or precipitate dissolves slightly in dilute ammonia M3

Allow 'soluble / colourless solution / precipitate dissolves in concentrated ammonia'.
Allow 3 marks for:
Add dilute ammonia (solution), then silver nitrate M1
No visible change M2
Cream / off white precipitate with silver nitrate M3

4. (a) M1 (could be scored by a correct mathematical expression Correct answerto the calculation gains all of M1, M2 and M3
$\mathrm{M} 1 \underline{\left.\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {t }} \text { (products) } \quad \sum \Delta \mathrm{H}_{t} \text { (reactants) }\right) ~}$
Credit 1 mark for 101 (kJ mol ${ }^{1}$)
OR a correct cycle of balanced equations
$\mathrm{M} 2=1669 \quad 3(590)$
$=1669+1770$
(This also scores M1)
$\mathrm{M} 3=\boldsymbol{+ 1 0 1}\left(\mathrm{kJ} \mathrm{mol}^{1}\right)$

Award 1 mark ONLY for 101

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 3 Sr and 2 Al OR a clear statement of M1 which could be in words and scores only M1

M4 - Using powders
Any one from

- To increase collision frequency / collisions in a given time / rate of collisions
- To increase the surface contact / contact between the solids / contact between (exposed) particles

Ignore dividing final answer by 3
Penalise M4 for reference to molecules.

M5 Major reason for expense of extraction
Any one from

- Aluminium is extracted by electrolysis OR aluminium extraction uses
(large amounts of) electricity
- Reaction / process / It / the mixture requires heat
- It is endothermic
(b) Calcium has a higher melting point than strontium, because Ignore general Group 2 statements.

Correct reference to size of cations / proximity of electrons M1 (For Ca) delocalised electrons closer to cations / positive ions / atoms / nucleus
OR cations / positive ions / atoms are smaller
OR cation / positive ion / atom or it has fewer (electron) shells / levels

Penalise M1 if either of Ca or Sr is said to have more or less delocalised electrons OR the same nuclear charge.
Ignore reference to shielding.

Relative strength of metallic bonding

M2 (Ca) has stronger attraction between the cations / positive ions / atoms / nucleus and the delocalised electrons OR stronger metallic bonding
(assume argument refers to Ca but credit converse argument for $\mathrm{Sr})$
$\mathbf{C E}=\mathbf{0}$ for reference to molecules or Van der Waals forces or intermolecular forces or covalent bonds.
(c) $\mathbf{M 1 2 M g}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}$
$\mathbf{M} 2 \mathrm{Mg}+\mathbf{2} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
Credit multiples of the equations.
M3 Magnesium hydroxide is used as an antacid / relieve indigestion (heartburn) / neutralise (stomach) acidity / laxative Not simply "milk of magnesia" in M3
5. Mg^{2+} and Cl^{-}

Do not allow names.
6. (a) sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) hydriodic acid / HI OR hydrobromic acid / HBr
(c) add dilute ammonia solution

Notes

* do not allow 'concentrated ammonia’ or ‘ammonia’
precipitate / ppt disappears / dissolves OR colourless solution forms
(d) would react with the acid / no gas evolved in tests

7. (a) decreases;
increase in shielding ;
(or atomic radius)
less attraction for bonding (or shared) electrons;
(b) brown solution;

$$
\rightarrow
$$

(or black solid)
$\mathrm{Cl}_{2}+2 \mathrm{KI} \quad 2 \mathrm{KCl}+\mathrm{I}_{2} ;$
(or ionic equation)
(c) SO_{2};
$\mathrm{SO}_{4}^{2 .}+4 \mathrm{H}^{+} 2 \mathrm{e}^{-} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

S (also $\mathrm{H}_{2} \mathrm{~S}$);

(d) $\mathrm{Cl}_{2}+2 \mathrm{NaOH} \mathrm{NaCl}+\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}$;
sodium chloride;
-1 ;
sodium chlorate(I) (or bleach etc);
+1 ;
8. C
9. A
10. C
11. D
12. C

