Topic 5 Exercise 2 - Equilibrium Constants

1. State the three features of a dynamic equilibrium
2. For each of the following equilibria, write the expression for the equilibrium constant K_{c} and state its units:
$2 \mathrm{NO}_{2}(\mathrm{~g})==\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
ii) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})==\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
iii) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})==2 \mathrm{HI}(\mathrm{g})$
iv) $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})==2 \mathrm{SO}_{3}(\mathrm{~g})$
v) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})==2 \mathrm{NH}_{3}(\mathrm{~g})$
3. For the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g})==\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
the equilibrium concentrations of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} are $1.0,0.205$ and 0.205 moldm ${ }^{-3}$ respectively. Calculate the value of K_{c}.
4. For the equilibrium $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})==2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The equilibrium concentrations are $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=1.0 \mathrm{moldm}^{-3},\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=0.11 \mathrm{moldm}^{-3}$, $\left[\mathrm{O}_{2}\right]=0.11 \mathrm{moldm}^{-3}$.
Calculate the value of K_{c}.
5. The reaction for the formation of hydrogen iodide does not go to completion but reaches an equilibrium: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})=-2 \mathrm{HI}(\mathrm{g})$
A mixture of 1.9 mol of H_{2} and $1.9 \mathrm{~m} \%$ or I_{2} was prepared and allowed to reach equilibrium in a closed vessel on $250 \mathrm{~cm}^{3}$ capacity. The resulting equilibrium mixture was found to contain $3 . / \mathrm{mol}$ of HI . Calculate the value of Kc .
6. Consider the equilibrium $-\mathrm{NO}_{2}(\mathrm{~g})==2 \mathrm{NO}_{2}(\mathrm{~g})$.

1 mol of dinitrogen tetro 1 die, $\mathrm{N}_{2} \mathrm{O}_{4}$, was introduced into a vessel of volume 10 dm^{3}. At equilibrium 30% had dissociated. Calculate Kc for the reaction.
7. In an experiméi 9.0 moles of nitrogen and 27 moles of hydrogen were placed into a vessel gritume $10 \mathrm{dm}^{3}$ and allowed to reach equilibrium. It was found that two thinds of the nitrogen and hydrogen were converted into ammonia.
Calculate Kc for the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})==2 \mathrm{NH}_{3}(\mathrm{~g})$
8. Hydrogen chloride can be oxidised to chlorine by the Deacon process:
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})==2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
0.800 mol of hydrogen chloride was mixed with 0.200 mol of oxygen in a vessel of volume $10 \mathrm{dm}^{3}$. At equilibrium it was found that the mixture contained 0.200 mol of hydrogen chloride. Calculate Kc for the reaction.
9. A 0.04 sample of SO_{3} is introduced into a 3.04 litre vessel and allowed to reach equilibrium. The amount of SO_{3} present at equilibrium is found to be 0.0284 mole. Calculate the value of K_{c} for the reaction $2 \mathrm{SO}_{3}(\mathrm{~g})==2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
10. The reaction between carbon monoxide and hydrogen proceeds according to the equilibrium $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})==\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ A 1 litre flask maintained at 700 K contains 0.1 mole of carbon monoxide. After 0.3 mole of hydrogen is added, 0.06 mol of ethanol are formed. Calculate the equilibrium constant K_{c}.
11. When 1.0 mole each of ethanoic acid and ethanol were allowed to reach equilibrium in a sealed vessel of volume $500 \mathrm{~cm}^{3}$, the amount of ethanoic acid present at equilibrium was found to be 0.33 mole. Calculate the value of K_{c} for the reaction $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}==\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
12. At 723 K , hydrogen and iodine react together and the following equilibrium is established: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})==2 \mathrm{HI}(\mathrm{g})$
The value of K_{c} for this equilibrium is 64 . In an experiment, equal amounts of hydrogen and iodine were mixed together, and the equilibrium mixture of the three gases in a container of volume $1 \mathrm{dm}^{3}$ at 723 K was found to contain 1.5 moles of iodine. Calculate the concentration of hydrogen iodide in the mixture at 723K.

