

TOPIC 5 EXERCISE 1 – Rates of Reaction

- 1. a) Explain what is meant by the terms:
 - i) collision frequency
 - ii) collision energy
 - iii) activation energy
 - b) Explain why not all collisions lead to a chemical reaction.
 - c) Complete the following table to show how collision frequency, collision energy and activation energy can be changed in a chemical system.

	Increase in	Increase in X	Increase in	Addition of
	concentration	pressure	temperature	catalyst
Collision		0,		
Frequency		1		
Collision		0,		
Energy		30		
Activation		7)		
Energy				

Page 1 of 2

2. a) Sketch the Maxwell-Boltzmann distribution of molecular energies for a low temperature T1 and a higher temperature T2.

If the temperature is increased from T1 to T2, explain what happens to

- i) the mean kinetic energy
- ii) the area under the graph
- iii) the number of particles having the most common amount of energy
- b) Hence explain why an increase in temperature has such a large effect on the rate of reaction.
- 3. a) Explain the meaning of the term catalyst.
 - b) Explain how a catalyst lowers the activation energy for a reaction.
 - c) Use the Maxwell-Boltzmann distribution of molecular energies to explain how this leads to an increase in reaction rate.