TOPIC 4 TEST MS

1. (a) enthalpy (or energy) to break (or dissociate) a bond;
averaged over different molecules (environments);
enthalpy (or heat energy) change when one mole of a compound;
is formed from its elements;
in their standard states;
(b) enthalpy change $=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) © Oycle;
$=4 \times 388+163+2 \times 146+4 \times 463-(944+8 \times 463)$;
(or similar)
$=-789$;
(+ 789 scores 1 only)
1
(ii) $\mathrm{AH}=\Sigma$ (enthalpies δ formation of products)
$-\Sigma$ (enthalpies $\sigma+$ formation of reactants)
$=4 \times-242-(75+2 \times-133)$;

(+ 777 scores one only)
(d) mean bond enthalpies are not exact
(or indication that actual values are different from real values)
2. (a) enthalpy change (or enthalpy of reaction) is independent of route (1)
$H=\Sigma H_{t}$ prods $-\Sigma H_{t} \quad$ reactants (or cycle) (1) minimum correct cycle is:

$$
\begin{aligned}
\mathrm{H} & =-642-286-(-602+2 \times-92) \mathbf{(1)} \\
& =-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})
\end{aligned}
$$

penalise this mark for wrong units +142 scores 1 mark out of the last three
(b) $\quad \mathrm{H}=\mathrm{mcT}$ (1) \quad (or mc $\Delta \mathrm{T}$)
$=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~kJ}$ (1)
mark is for 6720 J or 6.72 kJ $\frac{\mathrm{vol}}{1000} \quad \frac{50}{1000}$
moles $\mathrm{HCl}=\quad \times$ conc $=\quad \times 13$ (1)
$=0.15$ (1)
if error here mark en conseq.
Therefore moles of MgQ reacicted $=$ moles $\mathrm{HCl} / 2$ (1)
(mark is for/2, CE if not/2
$=0.15 / 2=0.075$
Therefore $H=6 \% / 2 / 075$ (1)
$\mathrm{J}=-90 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$
if must be given, allow 89 to 91
value (1)
sign (1); this mark can be given despite CE for /2

Note various combinations of answers to part (c) score as follows:
-89 to $-91 \mathrm{~kJ}(8)$ (or -89000 to 91000 J$)$
no units (7)
+89 to +91 kJ (7) (or +89000 to $+91000 \mathrm{~J})$
no units (6)
-44 to -46 kJ (5) (or -44000 to -46000J)
no units (4) if units after 6.72 or 6720 (5)
+44 to $+46 \mathrm{~kJ}(4)$ (or +44000 to +46000$)$
if no units and if no units after 6.72 or 6720 (3) otherwise,check, could be (4)
3. (a) (i) $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \quad \mathrm{NH}_{3}$ (1)

Ignores s
(ii) $\quad \mathrm{H}=(\Sigma)$ bonds broken $-(\Sigma)$ bonds formed (1)
$=1 / 2 \times 944+3 / 2 \times 436-3 \times 388$ (1)
$=-38 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})$
Ignore no units, penalise wrong units
Score $2 / 3$ for -76
$1 / 3$ for +38
Allow $1 / 3$ for +76
4. (a) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2} \quad 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (1) (or multiple)

$$
\frac{1.45}{58}
$$

(b) (i) \quad (1) $=0.0250$ (1)
allow 0.025
allow conseq on wrong M_{r}
1.45/100, CE; $\frac{1.45}{58.1}$ C.E.
(ii) heat released $=\mathrm{mc}$ T
$=100 \times 4.18 \times 58.1$ (1)
if 1.45 used in place of $100 \mathrm{CE}=0$
$=24300 \mathrm{~J}$ (1) (or 24.3 kJ$)$
allow 24200 to 24300
ignore decimal places
units tied to answer
If use $0.1 \times 4.18 \times 51.8$ allow $1 / 2$ for 24.3 with no

$$
\text { (iii) } \quad \begin{align*}
& \frac{24.3}{0.0250} \\
& \quad=-972(\mathrm{~kJ} \mathrm{~mol}-1)(: \tag{1}\\
& \text { allow }-968 \text { to }-973 \\
& \text { allow }+972 \\
& \text { allow conseq } \\
& \text { allow no units } \\
& \text { penalise wrong units }
\end{align*}
$$

units
(c) (i) Heat loss (1) or energy loss do not allow incomplete combustion
(ii) Difference: more negative (1) (or more exothermic) Qol mark

Explanation: heat (or energy) released when water vapour condenses (1)
or heat/energy required to vaporise water or water molecules have more energy in the gaseous state
(d)

$$
\begin{aligned}
& \text { (or cycle } \\
& =(2 \times-394)+(3 \times-286)+(-297)-(-1170)(\mathbf{1}) \\
& =-773 \text { (1) }
\end{aligned}
$$

ignore units even if wrong
Allow 1/3 for +773
5. D
6. D
7. B
8. C
9. A

[1]

10. A
