TOPIC 4 HW MS

1. (a) $(Q=m c T)$

$$
=50 \times 4.18 \times 27.3
$$

If incorrect (eg mass $=0.22$ or 50.22 g) $\mathbf{C E}=$ $0 / 2$

1
$=5706 \mathrm{~J}$ (accept 5700 and 5710)
Accept 5.7 kJ with correct unit. Ignore sign.
(b) $\quad M_{r}$ of 2-methylpropan-2-ol $=74(.0)$

For incorrect M_{r}, lose M1 but mark on.

Moles = mass $/ \mathrm{M}_{\mathrm{r}}$
$=0.22 / 74(.0)$
$=0.00297$ moles
$H=-5706 /(0.002970 \times 1000)$
$=\mathbf{- 1 9 2 1}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
If 0.22 is used in par 4 ta), answer $=-8.45 \mathrm{~kJ}$
mol^{-1} scores 3
(Allow -1920, -1919)
If uses ther yalue given (5580 J), answer
$=-18 \mathrm{~m}^{-1} \mathrm{~K} \mathrm{~mol}^{-1}$ scores 3
Answer without working scores M3 only.
not penalise precision.
Lack of negative sign loses M3
(c) $\quad \mathrm{H}=\Sigma \mathrm{H}$ products $-\Sigma \mathrm{H}$ reactants

OR a correct cycle
Correct answer with no working scores 1 mark

- - only.
$H=(360)+(4 \times 393)+(5 \times 286)$
M2 also implies M1 scored.
1
$\mathrm{H}=\mathbf{- 2 6 4 2}$ (kJ mol-1) This answer only.
Allow 1 mark out of 3 for correct value with
incorrect sign.
(d) (-2422 - part (b)) $\times 100$ / -2422

Ignore negative sign.
Expect answers in region of 20.7
If error carried forward, 0.22 allow 99.7
If 5580 J used earlier, then allow 22.4
(e) Reduce the distance between the flame and the beaker / put a sleeve around the flame to protect from drafts / add a lid / use a copper calorimeter rather than a pyrex beaker / use a food calorimeter

Any reference to insulating material around the beaker must be on top.
Accept calibrate the equipment using an alcohol of known enthalpy of combustion.
(f) Incomplete combustion
(b) Moles $=m v / 1000(\mathbf{1})=0.20 \times 50 / 1000=1.00 \times 10^{-2}$
(c) Heat energy change $=\mathrm{mC} T(1)=50 \times 418 \times 3.2 \mathrm{~J}$
$=669 \mathrm{~J}$ (Ignore signs) (1)
Allow 668, 67.0 0.67kJ
Penalise wrong units if given
(d) $\quad=134 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Mark one : $2 \times$ (answer to (c))
Mark two : Dividing by answers to (b)
Allow 133-134
Penalise incorrect units

Mark conseq to equation in (a) for full marks, also to that in (c)
If No working is shown and answer is incorrect zero
(e) Incomplete reaction or Heat loss (1)
[8]
3. (a) (i) M1 (cquild besscored by a correct mathematical expression)

Correct answer gains full marks.
M1 $\mathrm{H}_{\mathrm{r}}=\mathrm{H}_{f}$ (products) $\quad \mathrm{H}_{f}$ (reactants)
OR a correct cycle of balanced equations / correct numbers of moles

Credit 1 mark for $+104\left(\mathrm{~kJ} \mathrm{~mol}{ }^{1}\right)$.
M2 $\quad=2(+\overline{20})+3(394) \quad(705) \quad 3(111)$
$=\overline{40} \quad 11 \overline{8} 2 \overline{2}+705+333$
$=1142$ (1038)
(This also scores M1)
M3 $\quad=\mathbf{1 0 4}\left(\mathrm{kJ} \mathrm{mol}^{1}\right)$
(Award 1 mark ONLY for + 104)
For other incorrect or incomplete answers, proceed as follows:

- Check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with 3CO, 2 Sb and $3 \mathrm{CO}_{2} \mathrm{OR}$ a clear statement of
M1 which could be in words and scores only M1.
(ii) It / Sb is not in its standard state

OR

Standard state (for Sb) is solid / (s)

OR

(Sb) liquid is not its standard state
Credit a correct definition of standard state as an alternative to the words 'standard state'.
QoL
(d) Low-grade ore extraction / it

- uses (cheap) scrap / waste iron / steel
- is a single-step process
uses / requires less / low(er) energy Ignore references to temperature / heat or labour or technology.

4. (a) (Energy required) to break a given covalent bond (1) averaged over a range of compounds (1)

Penalise first mark if 'energy' / 'enthalpy' evolved
(b) (i) $4 \times \mathrm{CH}=4 \times 413=+1652$
$1 \times \mathrm{C} \quad \mathrm{C}=1 \times 347=347$
$1 \times \mathrm{C}=\mathrm{O}=1 \times 736=736$
$21 / 2 \times \mathrm{O}=\mathrm{O}=2.5 \times 498=1245$ (1)
$=2735+1245=+3980(1)$
first mark for 4 : 1: 1 or 2735 ignore sign
(ii) $4 \times \mathrm{H} \quad \mathrm{O}=-4 \times 464=-1856$
$4 \times \mathrm{C} \quad \mathrm{O}=-4 \times 736=-2944(1)$
$=-4800(1)$
First mark for 4 : 4
(iii) $\quad \mathrm{H}_{\mathrm{R}}=\Sigma$ Bonds broken Σ Bonds made
$=+3980 \quad 4800=820(1)$
Conseq Mark for incorrect answers in (i) and (ii)
as
(i) Answer + (ii) Answer =
5. (a) (Enthalpy change) when $1 \mathrm{~mol}(1)$ of a compound is formed from its constituent elements (1) in their standard states (1)

Allow energy or heat, Ignore evolved or absorbed
Mark each point independently
(b) (The enthalpy change for a reaction is) independent of the route (1) $\Sigma \Delta$ $\Sigma \Delta \quad-$
(c) $\quad H_{R}=H_{t}$ products $\quad H_{t}$ reactants (1) $=[(3 \times-286)+(3 \times-394)] \quad(-248)(1)$ $=-1792$ (1) ($\mathrm{kJ} \mathrm{mol}^{-1}$)

Deduct one mark for each error to zero
6. (a) Heat energy change (1)

Not energy on its own
measured at constant pressure (1)
Mark separately, ignore constant temperature statements
(b) $\quad 2 \mathrm{Na}(\mathrm{s})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$

Balanced (1) State symbols (1), but only if all species are correct
Allow ${ }^{\frac{1}{8}} \mathrm{~S}_{8}(\mathrm{~s})$

7. (a) $\mathrm{M} 1 \mathrm{q}=\mathrm{mc} \quad \mathrm{T}$ (this mark for correct mathematical formula) Full marks for M1, M2 and M3 for the correct answer.
In M1, do not penalise incorrect cases in the formula.
$\mathbf{M 2}=(75 \times 4.18 \times 5.5)$
1724 (J) OR 1.724 (kJ) OR 1.72 (kJ) OR 1.7 (kJ)
(also scores M1)
Ignore incorrect units in M2.
M3 Using ${ }^{\Delta} 0.002 \overline{4} \mathrm{~mol}$
therefore $\mathrm{H}=\mathbf{7 1 8}\left(\mathrm{kJ} \mathrm{mol}^{1}\right)$
(Accept a range from 708 to 719 but do not penalise more than 3 significant figures)

Penalise M3 ONLY if correct numerical answer but sign is incorrect. Therefore $\mathbf{+ 7 1 8}$ gains two marks.
If units are quoted in M3 they must be correct.
If $\mathrm{T}=278.5, \mathrm{CE}$ for the calculation and penalise M2 and M3.

M4 and M5 in any order
Any two from

- incomplete combustion
- heat loss
- heat capacity of Cu not included
- some ethanol lost by evaporation
- not all of the $\left(2.40 \times 10^{3} \mathrm{~mol}\right)$ ethanol is burned / reaction is incomplete

If $\mathrm{c}=4.81$ (leads to 1984) penalise M2 ONLY and mark on for M3 = 827

(b)

$$
\underset{M 1}{\Sigma}
$$

\qquad Δ
$\mathrm{B}($ reactants $) \quad \mathrm{B}($ products $)=\mathrm{H}$
OR
Sum of bonds broken Sum of bonds formed $=$ H

OR

$$
\Delta
$$

$$
\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})
$$

$$
-4 \mathrm{~B}(\mathrm{C}=\mathrm{O})-6 \mathrm{~B}(\mathrm{O}-\mathrm{H})=-\mathrm{H}=1279
$$

Correct answer gains full marks.
Credit 1 mark for 496 ($\mathrm{kJ} \mathrm{mol}^{1}$)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this w(11id score 2 marks (M1 and M2).
If no AE, check for a correct méehod; this requires either a correct cyele, with $2 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores arily M1.

M2 (also scores M1)

(5998) (or 5535 if O-H cancelled)
$3 B(\mathrm{O}=0)=1488\left(\mathrm{~kJ} \mathrm{~mol}^{1}\right)$
Credit a maximum of one mark if the only scoring point is bonds formed adds up to 5998 (or 5535) OR bonds broken includes the calculated value of 3231 (or 2768).

M3
$\mathrm{B}(\mathrm{O}=\mathrm{O})=\underline{496}\left(\mathrm{~kJ} \mathrm{~mol}^{-}\right)$
Award 1 mark for 496
Students may use a cycle and gain full marks
8. (a) Temperature on y-axis

If axes unlabelled use data to decide that temperature is on y-axis.

Uses sensible scales
Lose this mark if the plotted points do not cover half of the paper.
Lose this mark if the temperature axis starts at $0^{\circ} \mathrm{C}$.

1

Plots all of the points correctly \pm one square
Lose this mark if the graph plot goes off the squared paper.

Draws two best-fit lines
Candidate must draw two correct lires.
Lose this mark if the candidate'sine is doubled or kinked.

Both extrapolations are correct to the $4^{\text {th }}$ minute
Award this mark if thedandidate's extrapolations are within one square of your extrapolations कr the candidate's best-fit lines at the 4 m minuté.
(b) $19.5\left({ }^{\circ} \mathrm{C}\right)$

Accept this answer only.
(c) $26.5 \pm 0.2\left(^{\circ} \mathrm{C}\right)$

Do not penalise precision.
(d) (c) - (b)

Only award this mark if temperature rise is recorded to 1 d.p.
(e) Uses mc T equation

Allow use of this equation with symbols or values for M1 even if the mass is wrong.

Correct value using $25 \times 4.18 \times(\mathrm{d})$
7.0 gives 732 J .

Correct answer with no working scores one mark only.
Do not penalise precision.
Allow answer in J or kJ.
Ignore sign of enthalpy change.
(f) $9.0(1) \times 10^{-3}$

Do not allow 0.01
Allow 9×10^{-3} or 0.009 in this case.
(g) If answer to (e) in J, then (e) / (1000 $\times(\mathrm{f})$)
or
If answer to (e) in jJ, then (e) / (f)
7.0 and 9.01×10^{-3} gives $81.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$

If answer to (e) is in J must convert to $\mathrm{kJ} \mathrm{mol}-1$ correctly to score mark.

Enthalpy change has negative sign
Award this mark independently, whatever (he) calculated value of the enthalpy change.
(h) The idea that this ensures that all of the solution, is at the same temperature

Do not allow 'to get an accurate reading' without qualification.
(i) (i) Chlorine is toxic / poisonous / corrosive

Do not allow 'harrinful'.
(ii) Explosion rishi apparatus will fly apart / stopper will come out
lgnoie 'gas cant escape' or 'gas cant enter the tide'.
9. (a) $\Delta \mathrm{H}_{\text {exp }}+\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}=0$

Any correct mathematical statement that uses all three terms

OR

$\Delta H_{\text {exp }}+\Delta H_{2}=\Delta H_{1}$ OR $\Delta H_{1}=\Delta H_{\text {exp }}+\Delta H_{2}$

OR

$\Delta \mathrm{H}_{\text {exp }}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2} \mathbf{O R} \Delta \mathrm{H}_{\text {exp }}=\Delta \mathrm{H}_{1}+\left(-\Delta \mathrm{H}_{2}\right)$
(b) $\Delta \mathrm{H}_{\mathrm{exp}}=\bar{\Delta} \mathrm{H}_{1}-\bar{\Delta} \mathrm{H}_{2}$
$\Delta \mathrm{H}_{\text {exp }}=15612=\mathbf{1 6 8}\left(\mathrm{kJ} \mathrm{mol}^{1}\right)$
Ignore units
Award the mark for the correct answer without any working
(c) (i) $\mathrm{M} 1 \mathrm{q}=\mathrm{m} \mathrm{c} \quad \mathrm{T}$ OR calculation ($25.0 \times 4.18 \times 14.0$) Award full marks for correct answer

M2 = 1463J OR 1.46 kJ (This also scores M1)
In M1, do not penalise incorrect cases in the formula

M3 must have both the correct value within the range specified and the minus sign

Penalise M3 ONLY if correct numerical value but sign is incorrect; e.g. +69.5 to +69.7 gains 2 marks (ignore +70 after correct answer)

For 0.0210 mol , therefore

$$
\mathrm{H}_{1}=\quad \overline{69.67} \text { to } \quad \overline{69.52}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

OR $\mathrm{H}_{1}=\mathbf{6 9 . 7}$ to $\mathbf{6 9 . 5}\left(\mathrm{kJ} \mathrm{mol}^{1}\right)$ Penalise M2 for arithmetic error but mark on

Accept answers to 3sf or 4sf in the range 69.7 to 69.5
$\Delta T=287$, score $q=m \mathrm{c} \Delta \mathrm{T}$ only
Ignore -70 after correct answer
If $\mathrm{C}=4.81$ (leads to 1684 J) penalise M2 ONLY and mark on for $\mathbf{M 3}=\underline{80.17}$ (range 80.0 to 80.2)

Ignore incorrect units
(ii) The idea of heat loss

NOT impurity
OR
Incomplete reaction (of the copper sulfate)
NOT incompetence
OR
Not all the copper sulfate has dissolved
NOT incomplete combustion
(e) Impossible to add / react the exact / precise amount of water Not just "the reaction is incomplete"
OR
Very difficult to measure the temperature rise of a solid OR
Difficult to prevent solid dissolving OR
(Copper sulfate) solution will form
10. C
11. A
12. C
13. D

