| 1. | QoL       | Bonding Both covalent                                                                                                            |     |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------|-----|
|    |           | (linked statement)                                                                                                               |     |
|    |           | 1                                                                                                                                |     |
|    |           | Structure lodine = molecular /l <sub>2</sub> (stated or in diagram)                                                              |     |
|    |           | [treat incorrect diagram as contradiction]                                                                                       |     |
|    |           | [a out moon out anagram do coma danonom]                                                                                         | 1   |
|    |           | Diamond = giant molecular/macromolecular/giant covalent / giant atomic (stated only)                                             |     |
|    |           |                                                                                                                                  |     |
|    |           | Reference to van der Waals' /dipole-dipole = contradiction                                                                       | 1   |
|    | QoL       | Iodine Weak van der Waals' forces / induced dipole-induced dipole                                                                |     |
|    |           | dipole                                                                                                                           | 1   |
|    | Diamon    | d Covalent bonds would need to be broken                                                                                         |     |
|    | 210111011 | 1                                                                                                                                |     |
|    | Many / s  |                                                                                                                                  |     |
|    | many /    |                                                                                                                                  |     |
|    |           |                                                                                                                                  |     |
|    |           |                                                                                                                                  |     |
|    |           |                                                                                                                                  |     |
|    |           | 1                                                                                                                                |     |
|    |           | <b>&gt;</b>                                                                                                                      | [6] |
|    |           | , O'                                                                                                                             |     |
| _  |           |                                                                                                                                  |     |
| 2. | (a)       | Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself); |     |
|    |           | Not withdraw an electron                                                                                                         |     |
|    |           | If $t > t$ to ionic, metallic, imf etc then $CE = 0$                                                                             |     |
|    |           |                                                                                                                                  | 1   |
|    |           | From a <u>covalent bond</u> or from a shared pair of electrons;                                                                  |     |
|    |           |                                                                                                                                  |     |
|    |           |                                                                                                                                  |     |
|    |           | 1                                                                                                                                |     |
|    | (b) Va    |                                                                                                                                  |     |
|    | dis       |                                                                                                                                  |     |
|    |           |                                                                                                                                  | 1   |
|    | Ну        | drogen bonds/H bonds;                                                                                                            |     |
|    |           | Not just hydrogen                                                                                                                |     |

1

1

1

1

1

1

1

1

1

1

(c) (Large) electronegativity difference between N + H/ difference of 0.9/ N very electronegative;

Insufficient to say N=3.1 and H=2.1

Forms N - / H + or dipole explained in words;

Not N becomes (fully) negative or vice versa

<u>Lone pair on N</u> attracts/forms weak bonds with H (+);

**QWC** 

Can score M2 and 3 from a diagram

Co-ordinate/dative; (d)

If not correct then CE = 0. If covalent/blank mark on.

Both electrons/ lone pair (on P/PH<sub>3</sub>)

Not lone pair on hydrogen

Shares/donated from  $P(H_3)/to H(+)$ ;

(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms

Accept distorted tetrahedral not bent tetrahedral

Pyramidal/tetrahedral/trigonal pyramidal;

Not bipyramidal/triangular

(f) (Only) weak Van der Waals forces between molecules /AsH<sub>3</sub> has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

> Accept has no H bonds. Ignore dp-dp in AsH<sub>3</sub> provided ammonia has stronger IMF. If between atoms mentioned CE=0

Break bonds CE = 0

4AsCl<sub>3</sub> + 3NaBH<sub>4</sub> 4AsH<sub>3</sub> + 3NaCl + 3BCl<sub>3</sub>; (g)

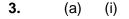
Accept multiples

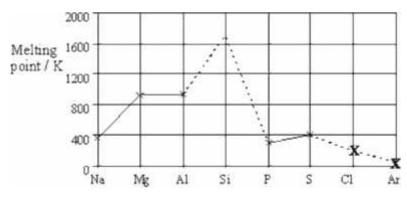
[14]

1

1

1


1


1

1

1

1





**M1** Si: cross 1200

M2 CI: cross below S

M3 Ar: cross below Cl
[allow, even if M2 wrong)
[If Cl cross missing and Ar below S, allow M3]

(ii) Si is macromolecular/giant molecular/giant covalent/ giant atomic

Covalent bonds need to be <u>broken</u>/accept 'overcome' [Not loosened/weakered]

Covalent bonds are strong / many covalent bonds involved/ requires much energy/hard to break

[Tied to 'break' or near miss in M2] [Not 'structure' is broken] [Must mention 'covalent' somewhere in part (a)(ii) to earn M2/M3]

If van der Waals'/IMF mentioned M2/M3 = CE = 0. [If ions mentioned M1/M2/M3 = CE = 0]

(iii) Intermolecular force = van der Waals'/induced dipole–dipole/dispersion forces

**QoL** Sulphur has greater  $M_r$  / size / surface area/more electrons/more atoms **so** stronger intermolecular forces (comparison)

[Mark separately] [Not 'more shells']

www.youtube.com/megalecture



(b) Trend: Decreases

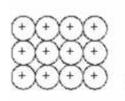
[If trend wrong = CE = 0]

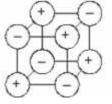
1

Increase in size of ion/atom / more shells / decrease in charge density / decrease in charge size ratio

1

1


Weaker attraction for delocalised/free/sea of electrons / weaker metallic bonding


[Ignore shielding]

[van der Waals' etc. = CE = 0 for M2 and M3]

[11]

**4.** (a)





(1)

[Diagrams must be complete and accurate]

2

(b) (i) Attraction / electrostatic forces/bonds/attractions between (positive) ions/lattice and delocalised/free electrons/sea of electrons.

[Not metallic bonding]
[Not just 'forces']

1

(ii) Electrostatic attractions/forces between ions or attractions between (oppositely charged) ions/ Na<sup>+</sup> & Cl<sup>-</sup> [Not ionic bonding]

1

- (iii) (Here) the ionic bonding in NaCl is stronger/requires more energy to break than the metallic bonding in Na
- **QoL** Accept 'bonding/forces of attraction in NaCl is stronger than in Na' [If IMF/molecules/van der Waals'/dipole—dipole mentioned in parts(i) or (ii), then CE = 0 for parts (i) and/or(ii) and CE = 0 for part(iii)]

1



|    | (C) | Sodium conducts <b>and</b> sodium chloride does NOT conduct  Allow 'only Na conducts'  Accept 'Na conducts, NaCl only conducts when molten'  [Do not accept sodium conducts better than sodium chloride              |   |      |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|
|    |     | etc.]                                                                                                                                                                                                                | 1 |      |
|    |     | Explanation: (Delocalised) electrons flow though the metal                                                                                                                                                           | 1 |      |
|    |     | Allow e- move/carry current/are charge carriers/transfer charge.  [Not 'electrons carry electricity']  [Not 'NaCl has no free charged particles']                                                                    |   |      |
|    |     | lons can't move in solid salt                                                                                                                                                                                        | 1 |      |
|    | (d) | Layers can slide over each other – idea that ions/atoms particles move  [Not molecules]  [Not layers separate]                                                                                                       | 1 | [12] |
| 5. | (;  | a) Oxygen more/very/highly electronegative (than hydrogen) OR oxygen has stronger attraction for bonding electrons / bonding electrons drawn towards oxygen;  causes higher e- density round oxygen atom / causes H- | 1 |      |
|    |     | O-;                                                                                                                                                                                                                  | 1 |      |
|    | (b) | van der Waals' forces between oxygen molecules;                                                                                                                                                                      | 1 |      |
|    |     | Hydrogen bonding between methanol molecules;                                                                                                                                                                         | 1 |      |
|    |     | H-B stronger than van der Waals' <i>OR</i> stronger IMF in methanol;  (if dipole-dipole forces in O <sub>2</sub> or methanol, allow comparison, hence max 2)  (if ionic/covalent etc. max 1)                         |   |      |
|    |     | (mention of bond break = $CE = 0$ )                                                                                                                                                                                  | 1 | [5]  |

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

MEGA LECTURE

Paddington Academy

**6.** B

**7.** C

[1]

**8.** C

[1]

**9.** A

[1]

**10.** B

[1]

[1]