

1

Page 1 of 8

MEGA LECTURE

(d)	Atoms/molecules get larger/more shells/more electrons/more surface area	
	Not heavier/greater Mr	1
	therefore increased <u>Van der Waals/IMF</u> forces Ignore references to dipole-dipole forces	1
(e)	Dative (covalent)/coordinate If not dative/coordinate CE = 0/2 If covalent or blank read on	1
	(Lone) pair/both electrons/two electrons on O(H ₂) donated (to He OR pair/both electrons come from O(H ₂) <i>Explanation of a coordinate bond specific to</i> <i>oxygen or water required</i> <i>Not just H</i> + attracted to lone pair since that is nearer to a H bond	·) 1
(f)	ionic if not ionic $CE = 0$	1
	oppositely charged <u>ions</u> /+ and – <u>ions or particles</u> atoms or molecules loses M2 and M3	1
	ions attract <u>strongly</u> OR strong/many (ionic) bonds must be brok S- loses M2 Reference to IMF loses M2 and M3	xen 1
(a) (attra	 (i) positive ions (1) (act) delocalised electrons (1) (or sea of or free or mobile) (1) Confusion with -ve ions or ionic lattice C.E. = 0 (ii) more protons (1) (or Mg²⁺ more charge than Na⁺) attracts <u>delocalised</u> (or bonding) electrons more strongly (1)
	Delocalised: can be brought forward from (a) (i) OR more delocalised electrons (1) Attacks positive ions more (1) <u>Metallic</u> bonding is strong <u>er</u> scores one mark, only given if no other marks awarded 2	-,

2.

www.youtube.com/megalecture

[13]

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com MEGA LECTURE 4 (b) macromolecular (1) (or giant molecule etc) covalent (1) strong covalent bonds (1) or bonds require much energy to break 3 (c) delocalised (OR free or sea of or mobile) electrons (1) 1 (d) Planes (1) weak (bonds) forces between planes (1) .e. 2 or v.dw forces between planes [10] 3. 3 (bonding) pairs of electrons (1) (a) (i) allow 3 bonds repel equally (1) (or as much as possible) Or get as far apart as possible Predicted bond angle: 118 (allow 117 - 119°) (1) (ii) Explanation: lone pair (1) repels more than bonding pair (1) Allow EXP it < 118° but C.E. = Q if ∠ ≥ 120° 5 (b) Name of shape: Tetrahedral (1) Example: CH4 etc (1) Allow correct ion 2 90° (1) (C) (i) (ii) lone pairs (or they) repel more than bonding pairs (or most) (1) (so are) as far apart as possible (1) Mark independently (iii) square planar (1) allow square 4

3

www.youtube.com/megalecture

MEGA LECTURE

(d)

correct shape (1) (only give this mark if first mark also given

3 bonds + 1 lone pair (1)

Penalise sticks (i.e. N-) once but N must be shown

[13]

2

4. (a) Force 1: Van der Waals' (1)

Force 2: dipole - dipole (1)

Force 3: hydrogen bonding (1) OR London, Dispersion, temporary dipole

(b) (i) covalent <u>between atoms</u> (1) OR within molecule

Van der Waals' between molecules (1)

- (ii) molecular (1)
- (iii) Bonds (or forces) between molecules must be broken or loosened (1)
 OR V.dW forces
 OR intermolecular forces
 Mention of ions CE=0

4

3

(c) (i) H-Bonding in HF (1)

(dipole-) dipole in HCI (1) OR V.dW

H-bonding is stronger than dipole-dipole or V.dW (1) OR H-bonding is a strongest intermolecular force for 3[⊲] mark

www.youtube.com/megalecture

MEGA LECTURE

5

www.youtube.com/megalecture

Page 5 of 8

MEGA LECTURE

M2 tied to M1 NOT separate e-s in S•- 2 I p

(iv) $CS_2 + 2H_2O$ $CO_2 + 2H_2S$ (1) Ignore state symbols even if wrong

[7]

7

4

2

4

- 6. (a) (i) Electronegativity (difference) or suitable description (1) Accept F and Cl are highly electronegative Not both atoms are highly electronegative
 - (ii) HF = hydrogen bonding (1) HCl = (permanent) dipole-dipole bonding or even van de Waals' (1) Hydrogen bonding stronger / is the strongest IMF (1) Accept a statement that HF must have the stronger IMF, even if no IMFs identified The explanation must be based on <u>intermolecular</u> forces/attractions Note: if the explanation is <u>clearly intramolecular</u> = CE
 - (b) Electron <u>pair</u> or lone <u>pair</u> donated (1)

Do not accept 'donation of electrons'

From chloride ion to Al or AlCl₃ (1)

M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from AI. The second mark, M2, is for this specific bond Ignore missing charge

(c)

www.youtube.com/megalecture

Page 6 of 8

www.

Page 7 of 8

8.	C	
9.	A	[1]
10.	П	[1]
10.	D	[1]

www.youtube.com/megalecture

Page 8 of 8