TOPIC 3 HW MS

1. (a) Hydrogen/H bonds

Not just hydrogen
van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole
(b)

M1 for partial charges as indicated in diagram (correct minimum)
M2 for all four lone pairs
M3 for H bond from the In to the $\mathrm{H}(\delta+)$ on the other molecule
Lone pair on hydrogercE $=0$
OHO CE =0
If only one molerule of water shown
$C E=0$
(c) Hydrogen bonds/ivis (in water) stronger

OR
IMF/VDM 1 dipole-dipole forces (in $\mathrm{H}_{2} \mathrm{~S}$) are weaker OR

H bonding is the strongest IMF
Ignore energy references
Comparison must be stated or implied
(d) Atoms/molecules get larger/more shells/more electrons/more surface area

Not heavier/greater Mr
therefore increased Van der Waals/IMF forces
Ignore references to dipole-dipole forces
(e) Dative (covalent)/coordinate

If not dative/coordinate CE $=0 / 2$
If covalent or blank read on
(Lone) pair/both electrons/two electrons on $\mathrm{O}\left(\mathrm{H}_{2}\right)$ donated (to H^{+})
OR pair/both electrons come from $\mathrm{O}\left(\mathrm{H}_{2}\right)$
Explanation of a coordinate bond specific to oxygen or water required
Not just H+attracted to lone pair since that is nearer to a H bond
(f) ionic
if not ionic $C E=0$
oppositely charged ions/+ and - ions or particles
atoms or molecules loses M2 and M3
ions attract strongly OR strong/many (ionic) bonds must be broken
S- loses M2
Reference to IMF loses M2 and M3
1
2. (a) (i) positive ions (1)
(attract) delocalised electrons (1) (or sea of or free or mobile) (1)
Confusion with -ve ions or ionic lattice C.E. = 0
(ii) more protons (1) (or Mg^{2+} more charge than $\mathrm{Na}{ }^{+}$) attracts delocalised (or bonding) electrons more strongly (1)
Delocalised: can be brought forward from (a) (i)
OR more delocalised electrons (1)
Attacks positive ions more (1)
Metallic bonding is stronger scores one mark, only given if
no other marks awarded
(b) macromolecular (1) (or giant molecule etc) covalent (1)
strong covalent bonds (1) or bonds require much energy to break
(c) delocalised (OR free or sea of or mobile) electrons (1)
(d) Planes (1)
weak (bonds) forces between planes (1) or v.dw forces between planes
3.
(a) (i) 3 (bonding) pairs of electrons (1) allow 3 bonds repel equally (1) (or as much as possible) Or get as far apart as possiove
(ii) Predicted bond angle: 118(6allow 117-119) (1) Explanation: lone pair (1), repels more than bonging pair (1)

Allow EXP < 118° but C.E. $=0$ If $)<\geq 120^{\circ}$
(b) Name of shape; Tetrahedral (1)

Example: SHA etc (1)
Allow correct ion
(c) (i) 90° (1)
(ii) lone pairs (or they) repel more than bonding pairs (or most) (1) (so are) as far apart as possible (1)

Mark independently
(iii) square planar (1)
allow square
(d)

3 bonds + 11 one pair (1)
correct shape (1)
only give this mark if first mark also given
Penalise sticks (i.e. N -) once but N must be shown
4. (a) Force 1: Van der Waals' (1)

Force 2: dipole - dipole (1)
Force 3: hydrogen bonding (1)
OR London, Dispersion, temporary dipole
(b) (i) covalent between atoms (1)

OR within molecule
Van der Waals' between molecules (1)
(ii) molecular (1)
(iii) Bonds (or forces) between molecules must be broken or loosened (1)

OR V.dW forces OR intermolecular forces Mention of ions CE=0
(c) (i) H -Bonding in HF (1)
(dipole-) dipole in HCl (1) OR V.dW

H-bonding is stronger than dipole-dipole or V.dW (1) OR H-bonding is a strongest intermolecular force for 3rd mark
(ii) HI bigger molecule than HCl (1)

OR Heavier, more es, more electron shells, bigger $\mathrm{M}_{\text {, }}$, more polarisable

Therefore the forces between HI molecules are stronger (1) QL mark (Look for unambiguous statements using correct terminology)
(d) (i) ionic (1)

Strong forces between ions (1)
OR lots of energy required to break bonds
(ii) All bonds must be broken (1)
mention of molecules etc $C E=0$
(e) macromolecular (1)

OR giant molecule / lattice or correct diagram
Strong covalent bonds (1)
OR lots of energy required to break bonds

2
5.
(i) Bonding in $\mathrm{Na}_{2} \mathrm{~S}$:

Bonding in CS covalent (1)
ignore ptiner words such as dative / polar / coordinate
(ii) Clear indication of electron transfer from Na to S (1) 1 e from each (of 2) Na atoms or 2 e - from 2 Na atoms (1) QoL correct English
(iii)

Correct covalent bonds (1)
All correct including lone pairs (1)
Allow all ${ }^{s}$ or all xs

M2 tied to M1
NOT separate e-s in S - 21 p
(iv) $\mathrm{CS}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{~S}$ (1)

Ignore state symbols even if wrong
6. (a) (i) Electronegativity (difference) or suitable description (1)

Accept F and Cl are highly electronegative Not both atoms are highly electronegative
(ii) $\mathrm{HF}=$ hydrogen bonding (1)
$\mathrm{HCl}=$ (permanent) dipole-dipole bonding or even van de Waals'
(1)

Hydrogen bonding stronger / is the strongest IMF (1)
Accept a statement that HF must have the stronger IMF, even if no IMFs identified
The explanation must be based on intermolecular forces/attractions
Note: if the explanation is clearly intramolecular $=C E$
(b) Electron pair or lone pair donated (1)

Do not accept 'donation of electrons'
From chloride ion to Al or $\mathrm{AlCl}_{3}(\mathbf{1})$
M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from Al. The second mark, M2, is for this specific bond
Ignore missing charge
2
(c)
$\mathrm{PCl}_{5} \quad \mathrm{PCl}_{4}^{+}$

(1)

(1)
PCl_{5} shown as trigonal bipyramid $\mathrm{PCl}_{4}{ }^{+}$shown as tetrahedral
[Look for: ONE solid linear CI-P-Cl bond] NO solid linear, $\mathrm{CI}-\mathrm{P}-\mathrm{Cl}$ bonds]

Bond Angle(s) 90° and 120° (1) 109.5° (1)

Bond angle(s) 109 or
7. (a) dative / coordinate (covalent) bond;
(donated) from P to H.)
(b)
PH_{3}

(1)
PH_{4}

(1)
$1 / 2$
pyramidal OR trigonal pyramid 109() ${ }^{\circ}$; (accept tetrahedral)
8. C
9. A
10. D

