1 (a) 34.0
Penalise precision once
(b) $1.76 \mathrm{~mol} \mathrm{dm}^{-3}$
(c) answer to (b) divided by 0.05

35(.3) on correct figures
1

Shows working

Correct answer only scores this mark Lose this mark if any units are given for the factor
2. Include washings or words to that effect / mix confents Accept 'use distilled / deionised vater'. Allow 'weigh directly into fibsk' if washing included.

3. (a)
Method 1
Mass of $\mathrm{H}_{2} \mathrm{O}=4.38 \quad 2.46$

Method 2

Percentage of $\mathrm{H}_{2} \mathrm{O}=44 \%$
(= 1.92 g)
If there is an AE in M1 then can score M2 and M3 If M_{r} incorrect can only score M1

ZnSO_{4}	$\mathrm{H}_{2} \mathrm{O}$	ZnSO 4	H 2 O	
$\underline{2.46}$	$\underline{1.92}$	$-\underline{56}$	$\underline{44}$	
161.5	18	161.5	18	
$(0.0152$		$0.107)$	$(0.347$	
$(1$	$:$	$7)$	(1)	$2.444)$
$x=7$		$x=7$	$7)$	

If $x=7$ with working then award 3 marks.
Allow alternative methods.
If M1 incorrect due to $A E$, M3 must be an integer.
(b) Moles $\mathrm{HCl}=\underline{0.12(0)}$
$\mathrm{mol} \mathrm{ZnCl} 2=0.06(0)$ OR $\underline{0.12 / 2}$

If M2 incorrect then CE and cannot score M2, M3 and M4.
mass $\mathrm{ZnCl}_{2}=0.06 \times 136.4$
Allow $65.4+(2 \times 35.5)$ for 136.4
$=\underline{8.18(4)}(\mathrm{g})$ OR $\underline{8.2}(\mathrm{~g})$
Must be to 2 significant figures or more. Ignore units.

$$
\frac{10.7}{136.4}
$$

(c) Moles $\mathrm{ZnCl}_{2}=\quad(=0.0784)$

OR moles $\mathrm{Zn}=0.0784$
Mass Zn reacting $=0.0784 \times 65.4=(5.13 \mathrm{~g})$
M2 is for their M1 $\times 65.4$

1
\% purity of $\mathrm{Zn}=\frac{5.13}{5.68} \times 100$

M 3 is $\mathrm{M} 2 \times 100 / 5.68$ provided M 2 is <5.68
= $\underline{90.2} \%$ OR 90.3\%
Allow alternative methods.
$\mathrm{M1}=$ Moles $\mathrm{ZnCl}_{2}=\underline{10.7}$ (=0.0784)
136.4

M2 = Theoretical moles $\mathrm{Zn}=\underline{5.68}$ (= 0.0869)
65.4
$M 3=M 1 \times 100 / M 2=(0.0784 \times 100 / 0.0869)$
M4 = $\underline{90.2 \%}$ OR $\underline{90.3 \%}$
4. (a) To make sure all the solutions (from both the burette and pipette) react
with each other / are in the flask Penalise 'solid' or 'residue'. Do not allow any suggestion of removal of species.
(b) Water does not change the number of moles of either reagent / reactants
Water is not a reagent / does not react with either reactant.
Do not allow 'water is not involved in the reaction'.
Apply list principle.

5.
(a) Any three from:

A method of weighing by difference / wash the solid from its weighing container into the beaker

If the nature of any washing is imprecise penalise once only.

Wash the (wet) rod into the flask / beaker after use
Do not allow a method where the solution is made up directly in the flask.

Wash the (wet) beaker into the flask after transfer Ignore any instructions that refer to rinsing equipment (before use) or use of deionised water.

Wash the filter funnel (after transfer) into the flask
Use a teat pipette to make up to the mark on the volumetric flask
Ensure the bottom of the (liquid) meniscus is on the graduation mark

Mix / shake the final solution in the flask / invert flask

Max 3

(b) Do (a) further titration(s)

Mark these points independently.

1
To obtain concordant results
Allow results with ± 0.1
[5]
6. Total volume $=(10 \times 12) / 0.25=480\left(\mathrm{~cm}^{3}\right) \mathbf{M 1}$

Allow any correct method.

Therefore add 470 (cm^{3}) M2
For M2, allow M1-10, even if M1 is incorrect.
Correct answer without working scores 1 mark only.
[2]

7.
(a) $\mathrm{P}=100000 \mathrm{~Pa}$ and $\mathrm{T}=298 \mathrm{~K}$

Wrong conversion of V or incorrect conversion of P / T lose M1 + M3

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}} \text { or } \frac{100000 \times 4.31}{8.31 \times 298}
$$

If not rearranged correctly then cannot score M2 and M3
$n($ total $)=174(.044)$
$n(N O)=\underline{69.6}$
Allow student's M3×4/10 but must be to 3 significant figures
(b) (i)

Allow answer to 2 significant figures or more

176.5

Allow 176 177
But if answer $=0.176 \quad 0.18$ (from $3 / 17$) then allow 1 mark
(ii) $176.47 \times 46=8117.62$

M1 is for the answer to (b)(i) $\times 46$. But lose this mark if $46 \div 2$ at any stage However if $92 \div 2$ allow M1

$$
8117.62 \times \frac{80}{100}(=6494 \mathrm{~g})
$$

M 2 is for $\mathrm{M} 1 \times 80 / 100$

$$
\frac{6494}{1000}=6.5
$$

M3 is for the answer to M2 $\div 1000$ to min 2 significant figures (kg)

OR

If 163 mol used:
$163 \times 46=7498$ (1)

$$
7.498 \times \frac{80}{100}=5998.4 \mathrm{~g}(1)
$$

6.00 kg (1)

$$
0.543 \times \frac{2}{3}(=0.362)
$$

(c)

$$
\begin{array}{r}
\text { if not } \times \frac{2}{3} C E=0 / 2 \\
0.362 \times \frac{1000}{250}=1.45\left(\mathrm{mal} \mathrm{dm}^{-3}\right)
\end{array}
$$

Allow $1.447 \quad 1.5$ ($\mathrm{mol} \mathrm{dm}^{3}$) for 2 marks.
8. (a) (i) $M 1-M_{r}$ calcium phosphate $=310$ (.3)

If M , wrong, lose M1 35d M5.

Allow M2 and / or M3 to 2 significant figures here but will lose M5 if answer not 1.23.

M3 - Moles phosphoric acid $=2 \times 0.0234=0.0468$
Allow student's $\mathrm{M} 2 \times 2$. If not multiplied by 2 then lose M3 and M5.

M4 - Vol phosphoric acid $=0.038(0) \mathrm{dm}^{3}$ If not $0.038(0) \mathrm{dm}^{3}$ then lose M4 and M5.

$$
\frac{0.0468}{0.038(0)}
$$

Conc phosphoric acid =

$$
\begin{aligned}
\text { M5 }= & \frac{1.23}{\text { This answer only }- \text { unless arithmetic or }} \\
& \begin{array}{l}
\text { transcription error that has been penalised by } 1
\end{array} \\
& \text { mark. }
\end{aligned}
$$

Allow no units but incorrect units loses M5.

$\frac{\frac{492.3}{688.3}}{} \times 100$ OR | $\frac{492}{688}$ |
| :--- |
| |

1 mark for both M_{r} correctly placed.
$=71.5 \%$
1

2

1
(c)

If $x=2$ with no working, allow M4 only.
$\mathrm{Ca}=1.67 \mathrm{~g}(\mathrm{M} 1)$.
Mark for dividing by correct A_{r} in Ca and P (M2).
If M1 incorrect can only score M2.
Correct ratio (M3).
$\mathrm{CaH}_{4} \mathrm{P}_{2} \mathrm{O}_{8} \quad$ OR $\quad \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \quad$ OR $\quad \mathrm{x}=2$
Value of x or correct formula (M4).

Alternative

Ca
$\mathrm{H}_{2} \mathrm{PO}_{4}$
$\mathrm{Ca}=1.67 \mathrm{~g}(\mathrm{M} 1)$.

$$
\begin{array}{ll}
\frac{1.67}{40.1} & \frac{8.09}{97.0}
\end{array}
$$

Mark for dividing by correct A_{r} / M_{r} in Ca and $\mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{M} 2)$.
If M1 incorrect can only score M2.
$=0.042 \quad 0.083$
1
2
Correct ratio (M3).
$\mathrm{CaH}_{4} \mathrm{P}_{2} \mathrm{O}_{8} \quad$ OR $\quad \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \quad$ OR $\quad \mathrm{x}=2$
Value of x or correct formula (M4).
9. (a) (i) 4.98×10^{-3}

Only
(ii) 2.49×10^{-3}

Allow answer to (a)(i) $\div 2$
Allow answers to 2 or more significant figures
(iii) 2.49×10^{-2}

Allow (a)(ii) $\times 10$
Allow answers to 2 or more significant figures
(iv) 138.2
3.44 divided by the candidate.s answer to (a) (iii)
138.2 or 138.1 (i.e. to 1 d.p.)
(v) $(138-60) \div 2=39.1$

Allow 39-39.1
Allow ((a)(iv) -60) $\div 2$

K/potassium
Allow consequential on candidate's answer to (a)(iv) and (a)(v) if a group 1 metal

Ignore + sign
(b) $\mathrm{PV}=\mathrm{n} R T$ or rearranged

If incorrectly rearranged CE $=0$

$$
\frac{0.022 \times 100000}{0.658 \times 8.31}
$$

$\mathrm{T}=$
Correct M2 also scores M1

402(.3) K (or $129{ }^{\circ} \mathrm{C}$)
allow $402-403 \mathrm{~K}$
or $129-130^{\circ} \mathrm{C}$
do not penalise ${ }^{\circ} \mathrm{K}$
M3 must include units for mark
(c) Pressure build up from gas/may explode/stopper fly out/glass shatters/breaks

Penalise incorrect gas
(d) (i) $\quad M_{r}=84.3$

If 84 used, max 1
$\underline{6.27}=0.074(4)$
84.3

CE if not 84 or 84.3
Allow answers to 2 or more significant figures
M2 $=0.074-0.075$
(ii) M1 $\quad \mathrm{M}_{\mathrm{r}} \mathrm{MgSO}_{4}=120(.4)$
allow 120.3 and 120.1
CE if wrong Mr

M2 Expected mass $\mathrm{MgSO}_{4}=0.074(4) \times 120(.4)=8.96 \mathrm{~g}$ Allow 8.8 - 9.0 or candidate's answer to (d)(i) \times 120(.4)
$\frac{8.96 \times 95}{100}$
M3 $\quad=85 \%$ yield $=$
Allow 8.3-8.6
M3 dependent on M2
Alternative method
M2 $\quad 0.074(4) \times 95 / 100=0.0707$
M3 $\quad 0.0707 \times 120(.4)=8.51 \mathrm{~g}$
Allow (d)(i) $\times 95 / 100$
Allow 8.3-8.6
M3 dependent on M2

10.
(a) $\mathrm{Mol} \mathrm{Pb}=8.14 / 207(.2)(=0.0393 \mathrm{~mol})$ M1 and M2 are process marks
$\mathrm{Mol} \mathrm{HNO} 3=0.0393 \times 8 / 3=0.105 \mathrm{~mol}$
Allow mark for M1 $\times 8 / 3$ or M1 $\times 2.67$
1
Vol $\mathrm{HNO}_{3}=0.105 / 2=0.0524\left(\mathrm{dm}^{3}\right)$
Accept range 0.0520 to 0.0530
No consequential marking for M3
Answer to 3 sig figs required
1
(b) $101000(\mathrm{~Pa})$ and $638 \times 10^{-6}\left(\mathrm{~m}^{3}\right)$
$\mathrm{n}=\mathrm{pV} / R T \quad(=\underline{101000 \times 638 \times 10 \text { б })} \quad(8.31 \times$ 298)

Can score M2 with incorrect conversion of p and V
If T incorrect lose M1 and M3
$\underline{0.026}(0)(\mathrm{mol})$
If answer correct then award 3 marks
Allow answers to 2 sig figs or more
$26.02=1$
If transcription error lose M3 only
(c) (i) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \quad 2 \mathrm{PbO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+(1) \mathrm{O}_{2}(\mathrm{~g})$

Allow multiples
Allow fractions
(ii) Decomposition not complete / side reactions / by-products / some (NO_{2})
escapes / not all reacts / impure $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
Ignore reversible / not heated enough / slow
(iii) Hard to separate O_{2} from NO_{2} / hard to separate the 2 gases Allow mixture of gases Not 'all products are gases'

11. A[1]
12. D
13. A
14. B
15. B [1]
16. D [1]
17. A
17. A [1]
18. A

