Topic 2 Exercise 6 - more complex calculations

1. Succinic acid has the formula $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}(\mathrm{COOH})_{2}$ and reacts with dilute sodium hydroxide as follows: $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}(\mathrm{COOH})_{2}+2 \mathrm{NaOH} \rightarrow\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}(\mathrm{COONa})_{2}+2 \mathrm{H}_{2} \mathrm{O}$ 2.0 g of succinic acid were dissolved in water and the solution made up to 250 cm^{3}. This solution was placed in a burette and $18.4 \mathrm{~cm}^{3}$ was required to neutralise $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$. Deduce the molecular formula of the acid and hence the value of n.
2. Sodium carbonate exists in hydrated form, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, in the solid state. 3.5 g of a sodium carbonate sample was dissolved in water and the volume made up to $250 \mathrm{~cm}^{3} .25 .0 \mathrm{~cm}^{3}$ of this solution was titrated against $0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$ and 24.5 cm^{3} of the acid were required. Calculate the value of x given the equation: $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. $25 \mathrm{~cm}^{3}$ of a sample of vinegar $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ was pipetted into oolumetric flask and the volume was made up to $250 \mathrm{~cm}^{3}$. This solution was placed in a burette and $13.9 \mathrm{~cm}^{3}$ were required to neutralise $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}{ }^{-3} \mathrm{NaOH}$. Calculate the molarity of the original vinegar solution and its collcentration in gdm^{-3}, given that it reacts with NaOH in a $1: 1$ ratio.
4. 2.5 g of a sample of impure ethanedioic aci $1, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was dissolved in water and the solution made up to $250 \mathrm{c} \mathrm{n}^{3}$. This solution was placed in a burette and $21.3 \mathrm{~cm}^{3}$ were required to neutralise $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$. Given that ethanedioic acid reacts with $\mathrm{NaOH}_{\mathrm{H}}$ in a 1:2 ratio, calculate the percentage purity of the sample.
5. A toilet cleaner containing sedium hydrogensulphate, NaHSO_{4} is believed to have been contaminated. $5.67 \% \mathrm{~g}$ of the sample were dissolved in water and the solution was made uptc $250 \mathrm{~cm}^{3}$. This solution was placed in a burette and 23.1 cm^{3} of it were required to neutralise $25 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3}$ sodium hydroxide. Calculate the pencentage purity of the sample given that the species react in a $1: 1$ ratio.
6. When silicon tetrachloride is added to water, the following reaction occurs:

$$
\mathrm{SiCl}_{4}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq})
$$

1.2 g of impure silicon tetrachloride was dissolved in excess water, and the resulting solution was made up to $250 \mathrm{~cm}^{3}$. A $25 \mathrm{~cm}^{3}$ portion of the solution was then titrated against $0.10 \mathrm{moldm}^{-3}$ sodium hydroxide, and $18.7 \mathrm{~cm}^{3}$ of the alkali were required. What was the percentage purity of the silicon tetrachloride?
7. $\quad 13.2 \mathrm{~g}$ of a sample of zinc sulphate, $\mathrm{ZnSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$, was strongly heated until no further change in mass was recorded. On heating, all the water of crystallisation evaporated as follows: $\mathrm{ZnSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{xH}_{2} \mathrm{O}$.
Calculate the number of moles of water of crystallisation in the zinc sulphate sample given that 7.4 g of solid remained after strong heating.

