MEGA LECTURE

Topic 2 Exercise 3 - Ideal Gas Equation

Remember: $\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, 0 \mathrm{~K}=-273{ }^{\circ} \mathrm{C}$

1. Calculate the volume occupied by one mole of a gas at $25^{\circ} \mathrm{C}$ and 100 kPa .
2. Calculate the pressure of a gas given that 0.2 moles of the gas occupy $10 \mathrm{dm}^{3}$ at $20^{\circ} \mathrm{C}$.
3. Calculate the temperature of a gas if 0.5 moles occupy $1.2 \mathrm{dm}^{3}$ at a pressure of 200 kPa .
4. Calculate the mass of a sample of carbon dioxide which occupies $20 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ and 100 kPa .
5. Calculate the relative molecular mass of a gas if a $500 \mathrm{~cm}^{3}$ sample $2020^{\circ} \mathrm{C}$ and 1 atm has a mass of 0.66 g .
6. At $25^{\circ} \mathrm{C}$ and 100 kPa a gas occupies a volume of $20 \mathrm{dm}^{3}$. Calcallate the new temperature of the gas if
a) the volume is decreased to $10 \mathrm{dm}^{3}$ at constant presare.
b) the pressure is decreased to 50 kPa at constant volyme.
7. 10.0 g of calcium nitrate is heated at 100 kPa and a temperature of $300^{\circ} \mathrm{C}$, at which temperature it fully decomposes. Cilculate
a) the volume of nitrogen dioxide evolved
b) the volume of oxygen evolved
c) the total volume of gaseyolved

Equation: $2 \mathrm{Ca}\left(\mathrm{NO}_{3} \mathrm{~S}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{CaO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\right.$
8. Calculate the volumece oxygen produced at 298 K and 100 kPa by the decomposition of $30 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3}$ hydrogen peroxide.

$$
\text { Equation: } 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

9. Lead (IV) earide dissolves in concentrated hydrochloric acid according to the following equation: $\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Starting with 37.2 g of lead (IV) oxide, calculate:
a) the volume of $12 \mathrm{moldm}^{-3} \mathrm{HCl}$ needed to completely dissolve it
b) the mass of PbCl_{2} produced
c) the volume of chlorine produced at 298 K and 100 kPa .
10. What mass of magnesium, and what volume of 2.0 moldm $^{-3}$ hydrochloric acid, will be required to produce $100 \mathrm{~cm}^{3}$ of hydrogen gas at 298 K and 100 kPa ?

Equation: $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
11. 0.52 g of sodium was added to $100 \mathrm{~cm}^{3}$ of water. Calculate:
a) The volume of hydrogen evolved at 298 K and 100 kPa
b) The concentration of the sodium hydroxide solution produced, assuming the volume of water does not change.
Equation: $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

