Topic 2 Exercise 2 - solutions

Using molarities and concentrations

1. Calculate the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $50 \mathrm{~cm}^{3}$ of a $0.50 \mathrm{moldm}^{-3}$ solution.
2. Calculate the number of moles of FeSO_{4} in $25 \mathrm{~cm}^{3}$ of a 0.2 moldm ${ }^{-3}$ solution.
3. Calculate the mass of KMnO_{4} in $25 \mathrm{~cm}^{3}$ of a 0.02 moldm $^{-3}$ solution.
4. Calculate the mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in $30 \mathrm{~cm}^{3}$ of a 0.1 moldm $^{-3}$ solution.
5. What is the molarity of 1.06 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $250 \mathrm{~cm}^{3}$ of solution?
6. What is the molarity of 15.0 g of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of solution?
7. What volume of a 0.833 moldm ${ }^{-3}$ solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ will be required to make $250 \mathrm{~cm}^{3}$ of a 0.100 moldm $^{-3}$ solution?
8. What volume of a $0.50 \mathrm{moldm}^{-3}$ solution of HCl wille required to make $100 \mathrm{~cm}^{3}$ of a 0.050 M solution?
9. How many moles of NaCl are there in $25 \mathrm{~cm}^{2} \mathrm{~g}^{\mathrm{f}}$ a $50 \mathrm{gdm}^{-3}$ solution?

Reacting masses and volumes

1. $25 \mathrm{~cm}^{3}$ of a solution of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$ reacts with $50 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid. What is the molarity of the acid?
2. $25.0 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{moldm}^{-3}$ solution of sodium hydroxide was titrated against a solution of hydrochloric acid of unknown concentration. $27.3 \mathrm{~cm}^{3}$ of the acid was required. What was the concentration of the acid?
3. $10 \mathrm{~cm}^{3}$ of a solution of NaCl react with $15 \mathrm{~cm}^{3}$ of a 0.02 moldm $^{-3}$ solution of AgNO_{3}. What is the concentration of the NaCl solution in gdm^{-3} ?
4. $25 \mathrm{~cm}^{3}$ of a 0.1 moldm $^{-3}$ solution of an acid $H_{x} A$ reacts with $75 \mathrm{~cm}^{3}$ of a 0.1 moldm $^{-3}$ solution of NaOH . What is the value of x ?

Equation: $\mathrm{H}_{\mathrm{x}} \mathrm{A}+\mathrm{xNaOH} \rightarrow+\mathrm{Na}_{\mathrm{x}} \mathrm{A}+\mathrm{xH}_{2} \mathrm{O}$
5. A solution of hydrochloric acid of volume $25.0 \mathrm{~cm}^{3}$ was pipetted onto a piece of marble which is calcium carbonate. When all action had ceased, 1.30 g of the marble had dissolved. Find the concentration of the acid

Equation: $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
6. What volume of 0.1 moldm $^{-3}$ hydrochloric acid would be required to dissolve 2.3 g of calcium carbonate?

Equation: $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
7. 2.05 g of the carbonate of an unknown alkali metal $\left(\mathrm{X}_{2} \mathrm{CO}_{3}\right)$ required $8.9 \mathrm{~cm}^{3}$ of 2.0 moldm ${ }^{-3}$ hydrochloric acid to completely dissolve it. What was the relative atomic mass of the metal and which metal was it?

Equation: $\mathrm{X}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{XCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
8. 3.2 g of hydrated sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, was dissolved in water and the resulting solution was titrated against 1.0 moldm $^{-3}$ hydrochloric acid. $22.4 \mathrm{~cm}^{3}$ of the acid was required. What is the value of x ?

