

TOPIC 20 HW MS

1.	(a)	If 2 stage test for one compound, award no marks for that compound, eg no mark for ROH or RX to alkene then Br ₂ test. If reagent is wrong or missing, no mark for that test; if wrong but close/incomplete, lose reagent mark but can award for correct observation. In each test, penalise each example of wrong chemistry, eg AgClr ₂ propan-1-ol				
		acidifiedpotassiumdichromate				
		sodium Named acid + conc H₂SO₄				
		named acyl chloride PCI ₅				
			M1			
		(orange) turns green		1		
		effervescence	\sim			
		Sweet smell		P		
		Sweet smell /misty fumes	. O*			
		Misty fumes	<u> </u>			
			M2	1		
		proponal Q.	•	1		
		add Tollens or Fehlings / Benedicts				
		acidifiedpotassiumdichromate				
		Bradys or 2,4-dnph				
		if dichromate used for alcohol cannot be use	d for			
		aldehyde				
			M3			
		Tollens: silver mirror or Fenlings/ Benedicts: red pp		1		
		(orange) turns green)L			
		Yellow or orange ppt				
			M4			
		0,		1		
		propanoic acid				
		Named carbonate/ hydrogencarbonate				
		water and UI (paper)				
		Named alcohol + conc H ₂ SO ₄ sodium or magnesium				
		PC!				
		if sodium used for alcohol cannot be used for	r acid			
			M5			
				1		
		effervescence				
		orange/red				
		Sweet smell effervescence				
		Misty fumes				
		if PCI₅ used for alcohol cannot be used for a	cid			
			M6			
				1		
		1-chloro propane				
		NaOH then acidified AgNO ₃				
		$AgNO_3$	ana hut			
		If acidification missed after NaOH.no mark h	ere put			

1

www.youtube.com/megalecture

MEGA LECTURE allow mark for observation Μ7 1 white ppt white ppt M8 1 (b) oxidation (of alcohol by oxygen in air) M1 1 absorption at <u>1680 -1750</u> (due to C=O) Must refer to the spectrum M2 1 comparison of polarity of molecules or correct imf statement:propanone is less polar OR propan-2-ol is more polarOR propanone has dipole-dipole forcesOR propan-2-ol has hydrogen bonding М3 1 about attraction to stationary phase or solubility in moving phasePropan-2-ol has greater affinity for stationary phase or vice versaOR propanone is more soluble in solvent/moving phase or vice versa M4 1 (i) (a) CO0 CH₃ allow -CO2allow +NH₃don't penalize position of + on NH₃ 1 (ii) н 000 H₂N CH(CH₃)₂

> allow -CO2allow NH₂allow C_3H_7

(iii)

2.

H₂?

WWW.MEGALECTURE.COM www.youtube.com/megalecture

2

Page 2 of 13

[12]

1

MEGA LECTURE H H₃N COOH (CH2)4NH3 allow -CO₂H allow +NH₃don't penalize position of + on NH₃ www.megalecture.com

1

Page 3 of 13

3

MEGA LECTURE

	(b) H ₂ N-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
H ₂ N-	н с- СН	$\begin{array}{c c} O & H & H \\ \hline \\ -C & -N & -C & -COOH \\ \hline \\ (CH_3)_2 & CH_3 \\ \hline \\ allow & -CO_2H \\ allow & NH_2- \\ allow & C_3H_7 \\ allow & as zwitterions \end{array}$		
		if error in peptide link e.g. I = I = I if twice, penalise both times not polymers if wrong amino acid in both can score Max 1	1	
	(c)	chromatography or electrophoresis ignore qualification to chromatography	1	[6]
3.	(a)	chromatography (allow GLC TLC GC HPLC) allow any qualification		
	(b)	5	1	
		Allow 320(.0) or 322(.0)	-	
	(c)	Use of excess air/oxygen or high temperature (over 800 °C) or remove chlorine-containing compounds before incineration	1	
	(d)	 Si(CH₃)₄ allow SiC₄H₁₂ allow displayed formula and do not penalise sticks Not TMS 		
		(ii) 3	1	
			1	[6]

Page 4 of 13

4

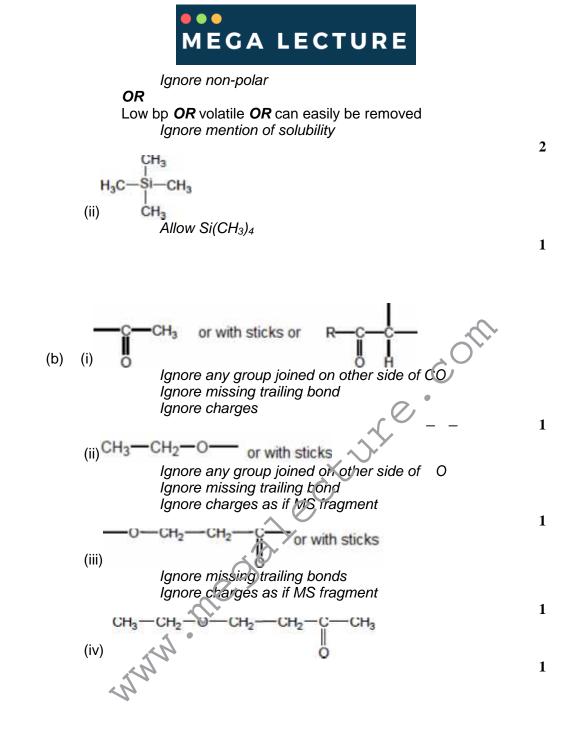
MEGA LECTURE

4. (a) (i) $H_3C - C$ 11 or RCOCH₃; (or description in words) (ignore trailing bonds) 1 (ii) H₃C—O or ROCH₃; (allow 1 if both (i) and (ii) give CH₃- or H₃Conly) 1 (iii) CH₂CH₂ or two adjacent methylene groups; 1 (iv) CH3 -C CH2-CH2-OCH3 0 OR CH₃COCH₂CH₂OCH₃; Ċ KUITE. 1 OH in acids or (carboxylic) acid present (b) (i) (ii) CH3 CH3--C - COOH CH3 (c) K2Cr2O7 /H+ KMnO₄ /H⁺ reagent no reaction Υ no reaction Ζ crange to green or purple to colourless turns green or turns colourless Winth. 5

WWW.MEGALECTURE.COM www.youtube.com/megalecture

Page 5 of 13

[9]


MEGA LECTURE

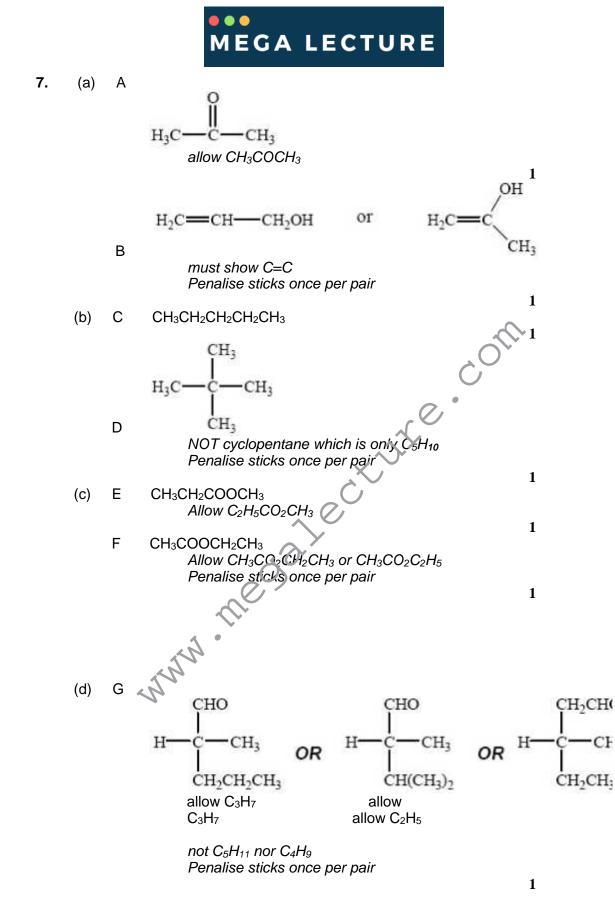
5. OH alcohols (a) 1 Ignore any group on RHS Must clearly indicate relevant two H on a C next to C=O On LHS, penalise H or CH or CH₂ or CH₃ Ignore missing trailing bonds or attached R groups 1 Ignore all groups on RHS Must clearly indicate relevant three H on C next to C=O Ignore missing trailing bonds or attached R group 1 (iii) 1.2 CH₃--CH₃ Or in words: two equivalent CH₃ groups Must clearly indicate two equivalent methyl groups. Penalise attached H Ignore missing trailing bonds or attached R groups 1 CH2-C-CH3 (iv) 1 6. (a) (i) Single / one (intense) peak / signal **OR** all H or all C in same environment OR 12 equiv H or 4 equiv C Do not allow non-toxic or inert (both given in Q) Any 2 from three Ignore peak at zero OR Upfield / to the right of (all) other peaks OR well away from others OR doesn't interfere with other peaks Ignore cheap 6


Page 6 of 13

[5]

WWW.MEGALECTURE.COM www.youtube.com/megalecture Page 7 of 13

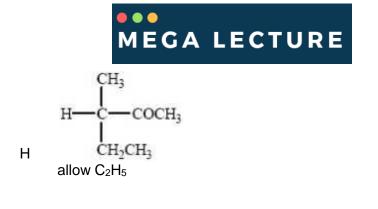
MEGA LECTURE



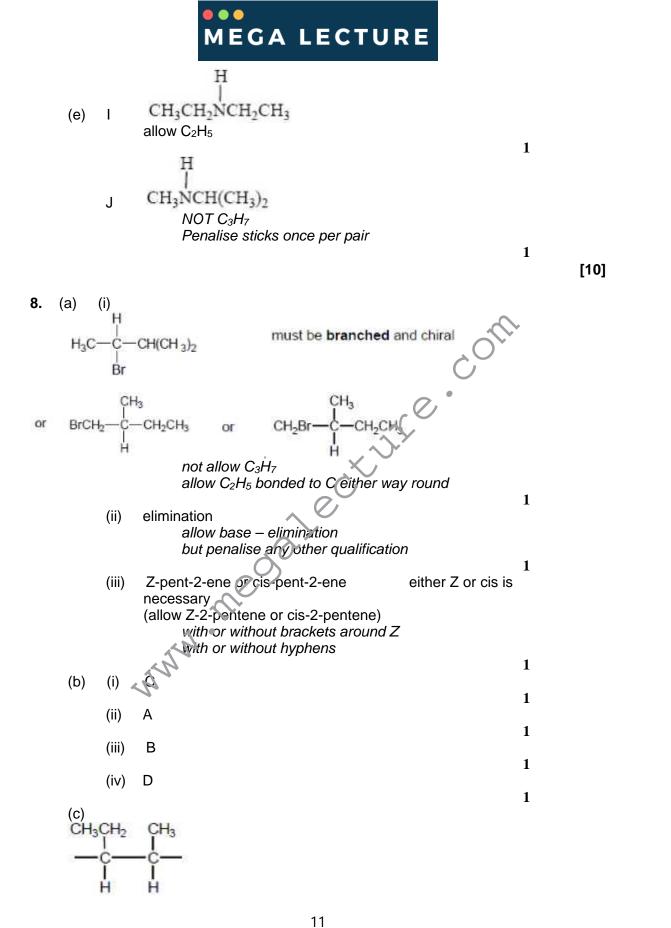
[11]

8

www.youtube.com/megalecture


Page 8 of 13

www.youtube.com/megalecture


Page 9 of 13

1

Page 10 of 13

www.youtube.com/megalecture

Page 11 of 13

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

MEGA LECTURE

allow C_2H_5 bonded via C or H must have both trailing bonds ignore brackets or n

addition or radical or step or chain growth QOL not additional

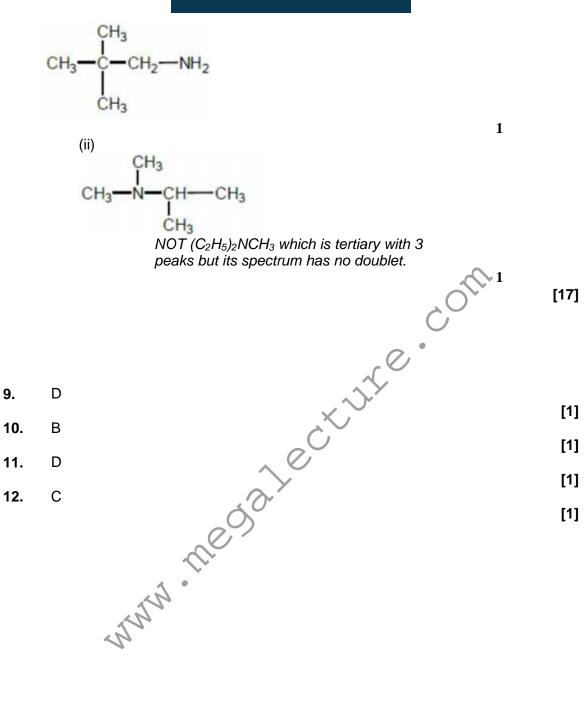
M3 ethyl groups H-CH CH₄Cł I-CH essential for M3 allow M1 and M2 with ethyl groups NH3) missing Allow SN1, i.e M2 first then attack of NH₃ on carbocation. Allow C_2H_5 in M3 bonded either way Allow with or without NH₃ to remove H⁺ in M4, but lose mark if Br- used. ignore + or - unless wrong + on central C instead of + loses M2 4 (ii) excess NH₃ ignore reflux allow conc ammonia in sealed tube 1 (iii) CH₃CH₂ CH₂CH₃

CH₃CH₂—C—CH₂CH₃ N—H CH₃CH₂—C—CH₂CH₃ H Allow C_2H_5 bonded either way

(e) (i)

(d)

WWW.MEGALECTURE.COM www.youtube.com/megalecture


1

1

1

Page 12 of 13

MEGA LECTURE

Page 13 of 13