

TOPIC 20 ANSWERS TO EXERCISES

Topic 20 Exercise 1

- 1. To separate components in a mixture and identify them
- 2. TLC solvent moves up plate coated with solid; CC a solvent moves down a column packed with solid; gas, under pressure at high temperature, is passed through a column, packed with a solid or coated by a liquid
- 3. The different components have different relative solubilites in the mobile phase and are retained by the stationary phase to different extents
- 4. Using Rf values
- 5. Using retention times and by mass spectrometry of the separated components
- 6. Separated by thin layer chromatography, located using developing agents such as ninhydrin or ultraviolet light, and identified by their Rf values

Topic 20 Exercise 2

- 1. a) Propanal has three peaks, propanone has two
 - b) Both have two peaks, one with chemical shift between 0 and 50. However the second peak in propanone will have a chemical shift at 160 – 220, but the second peak in propan-2-ol will have a chemical shift at 50 - 90

- 2. Peak at 60 ppm C-O and peak at 160 ppm O=C-O so ester is most likely $C_nH_{2n}O_2 = 116$ so n = 6Five peaks so two C atoms are in identical environments, likely -C(CH₃)₂ HCOOCH₂CH₂CH(CH₃)₂ or HCOOCH(CH₃)CH(CH₃)₂ or CH₃COOCH₂CH(CH₃)₂ or CH₃CH₂COOCH(CH₃)₂ or (CH₃)₂CHCOOCH₂CH₂CH₃ or (CH₃)₂CHCOOCH₂CH₃ or (CH₃)₂CHCH₂COOCH₃
- 3. Peak at 60 ppm C-O so alcohol is most likely $C_nH_{2n+2}O = 74$ sc n = 4 Two peaks so three C atoms are in identical environments, likely -(CH₃)₃ (CH₃)₃COH
- Peak at 210 ppm = C=O so carbonyl most likely C_nH_{2n}O = 84 so n = 5 Five peaks so no C atoms in identical environments CH₃CH₂CH₂CH₂CHO or CH₃CH₂CH(CH₃)CHO or CH₃CH₂CH₂COCH₃
- 5. Peak at 180 ppm = O=C-O so carboxylic acid most likely $C_nH_{2n}O_2 = 102$ so n = 5 Four peaks so two C atoms in identical environments, likely -C(CH₃)₂ (CH₃)₂CHCH₂COOH

WWW.MEGALECTURE.COM

www.youtube.com/megalecture

Topic 20 Exercise 3

1. peak at 1.1 is CH_3 - adjacent to $-CH_2$ peak at 2.2 is $-CH_2CO$ -, adjacent to CH_3 -

Page 1 of 4

MEGA LECTURE

peak at 11.8 is –COOH so molecule is propanoic acid, CH₃CH₂COOH

- a) peak at 1.2 is CH₃-, adjacent to -CH₂-peak at 1.3 is also CH₃-, adjacent to -CH₂-peak at 2.3 is -CH₂CO-, adjacent to CH₃-peak at 4.1 is -CH₂O-, adjacent to CH₃-so molecule is ethyl propanoate, CH₃CH₂COOCH₂CH₃
 - b) CHCl₃ is not used as a solvent because it contains a proton which will interfere with the spectrum of the substance being analysed.
 - c) TMS is a good standard because
 - it contains 12 identical protons, giving a single intense peak
 - it contains highly shielded protons, which do not interfere with the spectrum
 - it is cheap and non-toxic
- 3. e is $-C\underline{H_3}$ adjacent to $-C\underline{H_2}$ (c) b is $-C\underline{H_3}$ adjacent to -C=Od is $-C\underline{H_3}$ adjacent to $-C\underline{H}$ - (a) a is $-C\underline{H}$ - adjacent to -C=O

3-methylpentan-2one

4. 9.6 is -CHO adjacent to -CH- (2.1)
2.1 is -CH- adjacent to -CHO (9.6)
0.9 is 2 x -CH₃ adjacent to -CH₂- (1.7)

ethylbutanal

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

MEGA LECTURE

- 5. 4.1 is O-CH₂- adjacent to $-CH_3$ (1.3) 2.1 is $CH_3C=O$ CH₃COOCH₂CH₃ (ethyl ethanoate) (2.1)(4.1)(1.3)
- 6. 2.4 is $O=CCH_2$ adjacent to CH_3 (1.1) 2.2 is CH₃C=O CH₃COCH₂CH₃ (butanone) (2.2) (2.4)(1.1)
- 7. 0.9 is CH_3 adjacent to CH_2 (1.4) 1.2 is CH_3 adjacent to CH (3.6) 3.6 is O-CH-2.3 is -OH CH₃CH₂CH(OH)CH₃ (butan-2-ol) (0.9)(1.4)(3.6)(2.3)(1.2)
- ot ut e. 11.6 is -COOH 8. 2.2 is $O=CCH_2$ - adjacent to $-CH_2$ - (1.9) 1.0 is $-CH_3$ adjacent to $-CH_2$ - (1.9) CH₃CH₂CH₂COOH (butanoic acid) (1.0)(1.9)(2.2) (11.6)
- 9. 9.6 is -CHO adjacent to -CH- (2.3)2.3 is -CHC=O 1.1 is $2 \times CH_3$ adjacent to -CH- (2.3) (CH₃)₂CHCHO (methylpropanal) (1.1)(2.3)(9.6)

Topic 20 Exercise 4

1. empirical formula = $C_5 H_{10}$ from mass spectrum mr 102, efm = 102 so mf = C₅H₁₀O₂ infra-red spectrum: peak at 1710 cm⁻¹ indicates a carbonyl proton nmr spectrum: peak at 0.8 is CH₃- adjacent to -CH₂peak at 1.1 is -CH₂- adjacent to CH₃- and -CH₂peak at 2.3 is -CH₂CO- adjacent to -CH₂peak at 3.7 is CH₃Oso molecule is methyl butanoate, CH₃CH₂CH₂COOCH₃ 2. from mass spectrum mr = 60From ${}^{13}C$ nmr 60 ppm = C-O (alcohol) 3300 cm⁻¹ in IR spectrum confirms -OH alcohol $C_nH_{2n+2}O = 60$ so n = 3No identical C environments so must be CH₃CH₂CH₂OH (propan-1-ol) 3. from mass spectrum mr = 86From ¹³C nmr 220 ppm = C=O (carbonyl) 1700 cm⁻¹ in IR spectrum confirms C=O $C_n H_{2n} O = 86$ so n = 5

WWW.MEGALECTURE.COM

www.youtube.com/megalecture

Page 3 of 4

whatsapp: Fahad Hameed +92 323 509 4443, email: megalecture@gmail.com

Three C environments only so either $(CH_3)_3CCHO$ (dimethylpropanal) or $CH_3CH_2COCH_2CH_3$ (pentan-3-one)

Page 4 of 4