TOPIC 1 TEST MARK SCHEME

1. (a) (i) $1.6734 \times 10{ }^{24}(\mathrm{~g})$ Only.
$1.6734 \times 10{ }^{27} \underline{\mathrm{~kg}}$
Not $1.67 \times 10{ }^{24}(\mathrm{~g})$.
(ii) $\mathbf{B}$
2. (a)

| Particle | Relative charge | Relative mass |  |
| :---: | :---: | :---: | :---: |
| Proton | +1 or $1+$ | $1{ }^{\circ}$ | (1) |
| Neutron | 0 or no charge/neutral/zero | 1 (not-1) | (1) |
| Electron | -1 or 1- | 衴 1800 to $1 / 2000$ | (1) |
| or negligible |  |  |  |
| or negligibleor zero |  |  |  |
| or $5.0 \times 10^{-4}$ to $5.6 \times 10$ |  |  |  |
| if ' g ' in mass column - wrong |  |  |  |
|  | - |  |  |
| ${ }_{88}^{38} \mathrm{Ar}$ |  |  |  |

(b) (1)(1)

Allow numbers before or after Ar
N Allw
(c) $\mathrm{S}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$ (1)

Allow upper case letters
$\mathrm{S}^{2}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ (1)
If use subscript penalise once
(d) Block: p (1)

Explanation: Highest energy or outer orbital is (3) p OR outer electron, valency electron in (3) $p$ NOT $2 p$ etc.

2
[9]
3. (a) (i) Atoms with the same number of protons / proton number (1) NOT same atomic number
with different numbers of neutrons (1)
NOT different mass number / fewer neutrons
(ii) Chemical properties depend on the number or amount of (outer) electrons (1) OR, isotopes have the same electron configuration / same number of e-
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}(1)$
accept subscripted figures
(c) Highest energy e- / outer e-s / last e-in (3)d sub-shell (1)

OR d sub-shell being filled / is incomplete $\underline{O R}$ highest energy sub-shell is (3)d NOT transition element / e-configuration ends at 3d
Q of $L$
(d)

Mass number $=15 \underline{\text { AND }}$ atomic number $=7$ (1)

$$
\frac{(82 \times 2)+(83 \times 2)+(84 \times 10)+(86 \times 3)}{17} \quad \frac{(1428)}{(17)}
$$

4. (a)

M1 for the top line
M2 is for division by 17

Not 84
No consequential marking from M1 or M2 Ignore units

The $A_{r}$ in the Periodic table takes account of the other isotopes /different amounts of isotopes (or words to that effect regarding isotopes)

Award independently
Comparison implied
Isotope(s) alone, M4 = 0
(b) Dissolved in volatile solvent and forced through needle

Connected to positive terminal of high voltage supply
$\mathrm{Kr}(\mathrm{g}) \quad \mathrm{Kr}+(\mathrm{g})+\mathrm{e}(-)$
State symbols must clearlif be (g)

The ${ }_{8} \mathrm{Kr}$ isotope
One mark foi cientifying the 84 isotope gets a $2+$ charge

Qnemark for the idea of losing 2 electrons (trom this isotope)
5.
(a)

(b) Increased nuclear charge / proton number (1) NOT increased atomic number

Electrons enter same shell / energy level OR atoms get smaller OR same shielding (1)

Stronger attraction between nucleus and (outer) electrons (1) Q of L
(c) Explanation for aluminium: (third) electron in (3)p sub-shell (1) Sub-shell further away from nucleus OR of higher energy (1) OR extra shielding from (3)s

Explanation for sulphur: Pair of electrons in (3)p orbital (1) Repulsion between electrons (1)
tied to reference to e-pair in M3
Penalise ' 2 p' once only
$\rightarrow$
6. (a) $\quad \mathrm{Li}(\mathrm{g}) \quad \overrightarrow{\mathrm{Li}}(\mathrm{g})+\mathrm{e} \cdot(\mathrm{g})$
$\mathrm{Li}(\mathrm{g})-\mathrm{e}(\mathrm{g}) \rightarrow{ }_{\mathrm{Li} \cdot(\mathrm{g})}$
$\mathrm{Li}(\mathrm{g})+\mathrm{e} \cdot(\mathrm{g}) \quad \mathrm{Li} \cdot(\mathrm{g})+2 \mathrm{e}^{-}$
One mark for balanced equation with state symbols
Charge and state on electron need not be shown

## [10]

(b) Increases

If trend wrong then $C E=0 / 3$ for (b). If blank mark on.

Increasing nuclear charge / increasing no of protons Ignore effective with regard to nuclear charge

Same or similar shielding / same no of shells / electron (taken) from same (sub)shell / electron closer to the nucleus / smaller atomic radius
(c) Lower

If not lower then $C E=0 / 3$

Paired electrons in a (4) p orbital If incorrect $p$ orbital then $\mathrm{M} 2=0$
(Paired electrons) repel If shared pair of electrons $M 12+M 3=0$
(d) Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (priocipal or main) energy level

CE if moler mentioned
Must be comparative answer QWC
(e) $2 /$ two
(f) Arsenic / As
7. A
8. $D$
9. B

