TOPIC 1 ASSESSED HOMEWORK MARK SCHEME

$$
\frac{10 x+11 y}{x+y}
$$

1. (i)

$$
=10.8
$$

OR ratio 10:11 = 1:4 OR 20:80 etc
Allow idea that there are 5×0.2 divisions between 10 and 11.

1
abundance of ${ }^{10} \mathrm{~B}$ is $\underline{20}$ (\%)
OR
$\frac{10 x}{100}+\frac{11(100-x)}{100}$ $=10.8$
$\dot{1} 0 x+1100^{-} 11 x=1080$

$$
x=1100 \quad 1080=20 \%
$$

Correct answer scores M1 and MZ.
(ii) Same number of electrons (in oM (er, shell or orbital)

Ignore electrons determine chemical properties.
Same electronic configuration / arrangement Ignore protons unless wrong.
2. (a) (Total number of protons and neutrons (in nucleus of atom)
(Thumber of) nucleons
(b) Zn

Do not allow Zn^{1} or $\mathrm{Zn}{ }^{+1}$ or ZN Ignore numbers
(c) $\quad \mathrm{m} / \mathrm{z}$

Allow mass / charge
(relative) abundance / (relative) intensity
QoL Allow M1 + M2 in any order
(d) (i)

$$
\frac{206+201+(208 \times 2)}{4}=\frac{(829)}{4}
$$

$$
\begin{aligned}
& \text { M1 }=\text { topline } \\
& \text { M2 }=\div 4
\end{aligned}
$$

$$
=\underline{207.3}
$$

Only
207.3 = 3 marks
(ii) Lead / Pb

Not PB
(iii) Same number of electrons (in outer shell) / same eestronic configuration

Ignore electrons determine chemical properties Ignore reference to p and n if correct Penalise if incorrect

If moles and atoms mixes Max $=1$

OR

(Averace mass of one mole of atoms
$1 / 12$ mass of one mole of ${ }^{12} \mathrm{C}$
OR
(Weighted) average mass of all the isotopes
$1 / 12$ mass of one atom of ${ }^{12} \mathrm{C}$
OR
Average mass of an atom/isotope compared to C-12 on a scale in which an atom of $\mathrm{C}-12$ has a mass of 12

This expression $=2$ marks
(b) d block

Allow 3d/D
Other numbers lose M1
Ignore transition metals
[Ar] 3d $24 \mathrm{~s}^{2}$
Can be written in full Allow subscripts $3 \mathrm{~d}^{2}$ and $4 \mathrm{~s}^{2}$ can be in either order

27

$$
\frac{(90 \times 9)+(91 \times 2)+(92 \times 3)+(94 \times 3)}{17}
$$

(c)
$(=1850)$
(or their abundances)
If one graph reading error lose M1 and allow consequential M2 and M3.
If 2 GR errors penalise M1 and M2 but allow consequential M3
If not 17 or their abundances lose M2 and M3
$=91.2$
91.2 = 3 marks provided working shown.

Zr/Zirconium
M4 -allow nearest consequential element from M3
accept $Z r$ in any circumstance
(d) High voltage supply

Removes electron(s) (to form ions)
$Z_{+}=\underline{90}$ has shortest TOF
If not 90 lose M3 and M4
If charge is wrong on 90 isotope lose M3 only Accept any symbol in place of Z
since lowest mass/lowest m/z
Allow lightest
(e) (ions hit detector and) cause current/(ions) accept electrons/cause electron flow

QWC
bigger current $=$ more of that isotope/current proportional to abundance

Implication that current depends on the number of ions
4. (a) 37

These answers only.
Allow answers in words.
48
Ignore any sum(s) shown to work out the answers.
(b) Dissolved in volatile solvent/passed through hollow needle Subjected to high volage
(c) (i) $\mathrm{s} /$ block $\mathrm{s} / \mathrm{grop} \mathrm{L}$

Only,
(ii) $1 s^{2} 2 s^{2} 2 p \approx 3 s^{2} 3 p_{6} 4 s^{2} 3 d_{10} 4 p_{6} 5 s^{1}$

Anow 3dº before $4 \mathrm{~s}^{2}$
Allow in any order.
(d) $\frac{(85 \times 2.5)+87 \times 1}{\text { M1 is for top line }} 3.5$
$=\underline{85.6}$
Only
OR
$(58 \times 5)+87 \times 2$
7
M1 ${ }^{85}$ Rb 71.4\% and ${ }^{87}$ Rb 28.6\%
M2 divide by 100
$M 3=\underline{85.6}$
(e) Detector

Mark independently Allow detection (plate).

Current / digital pulses / electrical signal related to abundance Not electrical charge.
5. (a) $\mathrm{N}^{3} / \mathrm{N}^{-3}$
(b) F-/ fluoride

Ignore fluorine/F
Penalise FI
6. $\mathrm{H}-=1 \mathrm{~s}^{2}$ or $1 \mathrm{~s}_{2}$
7. (a) $\quad \mathrm{Na}(\mathrm{g}) \quad \mathrm{Na}+(\mathrm{g})+\mathrm{e}-$

OR $\mathrm{Na}(\mathrm{g})+\mathrm{e}-\quad \mathrm{Na}+(\mathrm{g})+2 \mathrm{e}-$
$(-)$ on electron not essential equation (1)
state symbols (1) Ignore state symbols on electrons
(b) Trend: Increases (1)

Explanation : Increased nuclear(Sinarge or proton number (1)
Stronger attraction (betweernnucleus and (outer) e-) (1)
Trend wrong
Allow M2 onity it M3 correct (con)
Q
(c) How values deviate from trend: (both values) too low (1)

Explanation for Al: e- removed from (3) p (1)
e - or orbital is higher in energy or better shielded than (3)s
or p electron is shielded by 3 s electrons (1)
Allow e- is further away
Mark independently
Explanation for S: e- removed from (3)p electron pair (1)
repulsion between paired e- (reduces energy
required) (1)
Mark separately
If deviation wrong allow M2 and M4
If M3 and / or M5 right (con)
If used 'd' rather than ' p ' orbital - lose M2 + M4 but may get M3, M5 (explanation marks)
[10]
8. (a) Heat / enthalpy / energy for removal of one electron (1)
from a gaseous atom (1) can score in an equation must have first mark to score the second
(b) (i) $2(\mathbf{1})$
(ii) Two elements (or $\mathrm{Na} / \mathrm{Mg}$) before the drop (in energy) to $\mathrm{Al}(\mathbf{1})$
(iii) ionisation energy of $\mathrm{Al}<$ that for Mg (1)
(iv) fall in energy from P to S (1) or discontinuity in trend

From Al to P there are 3 additional electrons (1) or three elements
For second mark idea of block of 3 elements
9.
(a) (i) Higher than P

1
(ii) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$

Allow any order
(iii) $\quad \mathrm{Al}^{+}(\mathrm{g})+\mathrm{e}\left(1 \quad \mathrm{Al}^{2}+(\mathrm{g})+2 \mathrm{e}_{(}\right)$

OR
$\mathrm{Al}^{+}(\mathrm{g})-\mathrm{Al}^{2}+(\mathrm{g})+\mathrm{e}^{()}$
OR
$\left.\mathrm{Al}^{+}(\mathrm{g}) \quad \mathrm{e}^{\prime}\right) \longrightarrow \mathrm{Al}^{2+}(\mathrm{g})$
(iv) Electron in Si (removed from) (3)p orbital /
electron (removed)
from higher energy orbital or sub-shell / electron in silicon is more shielded
Accept converse arguments relating to Al Penalise incorrect p-orbital
(b) Sodium / Na

Allow Na+

Electron (removed) from the $2^{\text {nd }}$ shell / $2 p$ (orbital)
M2 is dependent on M1
Allow electron from shell nearer the nucleus (so more attraction)
(c) Silicon / Si

Not SI

-
(d) Heat or energy needed to overcome the attrection between the (negative) electron and the (positive) nucleus or protons

Not breaking bonds
QoL
Or words to that effect eg electron promoted to higher energy level (infinity) so energy must bé supplied
10. (a) $2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$;

If ignored the $1 s^{2}$ given and written $1 s^{2} 2 s^{2} 2 p^{6}$ mark as correct
ATow capitals and subscripts
(b) (i) $\quad \mathrm{Na}+(\mathrm{g}) \quad \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}_{-(-)}$;

One mark for equation and one mark for state symbols

$$
\begin{aligned}
& \mathrm{Na}+(\mathrm{g})+\mathrm{e}_{(-)} \quad \mathrm{Na}_{2+}(\mathrm{g})+\overrightarrow{2} \mathrm{e}_{-}-; \\
& \mathrm{M} 2 \text { dependent on } \mathrm{M} 1 \\
& \text { Allow } \mathrm{Na}+(\mathrm{g})-\mathrm{e}_{(-)} \quad \mathrm{Na}(\mathrm{~g}) \\
& \text { Allow } \mathrm{X}+(\mathrm{g}) \quad \mathrm{X}^{2+}(\mathrm{g})+\mathrm{e}=1 \text { mark }
\end{aligned}
$$

(ii) $\quad \mathrm{Na}^{\left({ }^{(++)}\right.}$requires loss of e - from a 2(p) orbital or $2^{\text {ned }^{n d}}$ energy level or $2^{n d}$ shell and $\mathrm{Mg}^{(2+)}$ requires loss of e- from a 3(s) orbital or $3^{r d}$ energy level or $3^{r d}$ shell / $\mathrm{Na}^{\left({ }^{(2+1}\right.}$ loses e from a lower (energy)
orbital/ or vice versa;
Not from 3p

Less shielding (in Na);
Or vice versa for Mg
1
${ }^{e}-$ closer to nucleus/ more attraction (of electron to nucleus) (in Na);

M3 needs to be comparative
(iii) Aluminium /AI;
(c) Decreases;

If not decreases $C E=0$ If blank, mark on

Increasing nuclear charge/ increasing number of protons;

Electrons in same shell or level/ same shielding/ similar shielding;
[10]
11. D
12. D [1]
[1]
13. D[1]
14. A

