

TOPIC 18 HW MS

1. (a) Cyclohexane evolves 120 kJ mol-1

(expect triene to evole) 360 kJ mol^{-₁} (1) or 3 x 120

$$360 - 208 = 152 \text{ kJ}$$
 (1) NOT 150

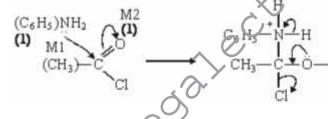
152 can score first 2

QofL: benzene lower in energy / more (stated) stable (1)

Not award if mentions energy required for bond breaking

3

6

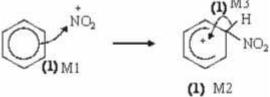

6

due to delocalisation (1) or explained

(b) (i) phenylamine weaker (1) if wrong no marks

lone pair on N (less available) (1) delocalised into ring (1) or "explained"

(ii) addition – elimination (1)



structure (1) M3 3 arrows (1) M4

N-phenyl ethanamide (1)

(iii) Conc HNO₃ (1) \rightarrow conc H₂SO₄ (1)

 $HNO_3 + 2H_2SO_4 \qquad NO_2 + H_3O_+ + 2HSO_4$ (1)

(iv) peptide / amide (1)

NaOH (aq) **(1)**HCl conc or dil or neither

H₂SO₄ dil NOT conc

NOT just H₂O

2

Notes

- (a) 360 or 3 × 120 or in words (1);
 - 152 NOT 150 (1); (152 can get first two marks)
 - Q of L benzene more stable but not award if H values used to say

that more energy is required by benzene for hydrogenation compared with

the triene or if benzene is only compared with cyclohexene (1);

- delocalisation or explained (1)
- (b) (ii) or N-phenylacetamide or acetanilide mechanism: if shown as substitution can only gain M1 if CH₃CO+ formed can only gain M1 lose M4 if Cl- removes H- be lenient with structures for M1 and M2 but must be correct for M3
 alone loses M2
 - (iii) No marks for name of mechanism in this part
 if conc missing can score one for both acids (or in equation)
 allow two equations

allow HNO₃ + H₂SO₄ NO₂₊ + HSO₄₋ + H₂O ignore side chain in mechanism even if wrong arrow for M1 must come from niside hexagon arrow to NO₂₊ must go to N but be lenient over position of + + must not be too near "tetrahedral" Carbon horseshoe from carbons 2-6 but don't be too harsh

(iv) reagent allow NaOH HCl conc or dil or neither H₂SO₄ dil or neither but not conc not just H₂O

[21]

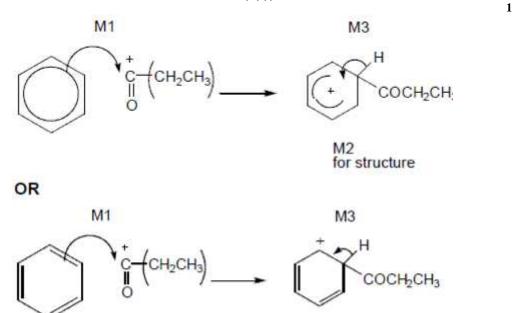
C₆H₆ + CH₃CH₂COCI C₆H₅COCH₂CH₃ + HCI 2. (a) (i) C₆H₆ + CH₃CH₂CO⁺ C₆H₅COCH₂CH₃ + H₊ allow C₂H₅ penalise C₆H₅-CH₃CH₂CO allow + on C or O in equation

Phenylpropanone

OR ethylphenylketone **OR** phenylethylketone Ignore 1 in formula, but penalise other numbers 1

1

1


AICI₃ can score in equation

CH₃CH₂COCI + AICI₃ CH₃CH₂CO+ + AICI₄ ACI CX allow C₂H₅

(ii) electrophilic substitution

can allow in (a)(i) if no contradiction

M1 arrow from circle or within it to C or to + on C

M2

horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1

M2 penalise C₆H₅−CH₃CH₂CO (even if already penalized in (a)(i))

M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3

[9]

3. (a) (i) Conc HNO₃

If either or both conc missing, allow one;

1

1

1

Conc H₂SO₄

this one mark can be gained in equation'

 $2 \text{ H}_2 \text{SO}_4 + \text{HNO}_3$ $2 \text{ HSO}_{4^-} + \text{NO}_{2^+} + \text{H}_3 \text{O}_4$

OR $H_2SO_4 + HNO_3$ $HSO_{4^-} + NO_{2^+} + H_2O$ Allow + anywhere on NO_{2^+}

OR via two equations

 $H_2SO_4 + HNO_3$ HSO_4 + H_2NO_3 +

- ignore position or absence of methyl group in M1 but must be in correct position for M2
- M1 arrow from within hexagon to N or + on N
- Allow NO₂+ in mechanism
- Bond to NO₂ must be to N
- horseshoe must not extend beyond C2 to C6 but can be smaller
- + not too close to C1

- M3 arrow into hexagon unless Kekule
- allow M3 arrow independent of M2 structure
- ignore base removing H in M3
- + on H in intermediate loses M2 not M3

(b)
$$2C_7H_5N_3O_6$$
 $5H_2O + 3N_2 + 7C + 7CO$
Or halved

[7]

4. (a) (i) conc HNO₃

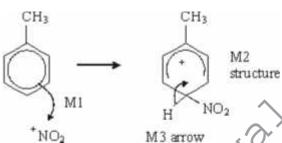
1

1

conc H₂SO₄

allow 1 for-both acids if either conc missing

1


 $HNO_3 + 2H_2SO_4$ $NO_{2^+} + H_3O_+ + 2HSO_{4^-}$

or $HNO_3 + H_2SO_4$ $NO_{2^+} + H_2O + HSO_{4^-}$

1

1

(ii) electrophilic substitution CH₃

horseshoe must not extend beyond C2 to C6 but can be smaller + must not he too close to Cl

3

(b) Sn or Fe / FCI (conc or dil or neither) or Ni / H₂ not NaBH₄ LiAIH₄

1

(c) (i) NH₃

1

Use an excess of ammonia

1

(ii) nucleophilic substitution

M3 structure

$$C_6H_5$$
— CH_2 — CI
 C_6H_5 — CH_2 — H
 C_6H_5 — CH_2 —

(d) lone pair on N less available (in correct context)
delocalised into the ring (Q of L)

(e) CH₂—CH₃

CH₃

CH₃

Br

CH₃

+ must be on N or outside a square bracket

(f) CH₂-N-C-CH₃

[19]

1

1

1

5. (a) CH₃CH₂COCI OR CH₃CH₂CCIO OR propanoyl chloride OR (CH₃CH₂CO)₂O OR propanoic anhydride penalize contradiction in formula and name e.g. propyl chloride could score in equation

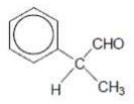
AICI₃ or FeCI₃ or names

could score in equation

CH₃CH₂COCI + AICI₃ CH₃CH₂CO+ + AICI₄-Allow RCOCI in equation but penalise above allow + on C or O in equation

(b)

M1 arrow from circle or within it to C or to + on C


Horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure langue hase removing H in M3

ignore base removing H in M3

3

(c) Tollens or ammoniacal silver nitrate

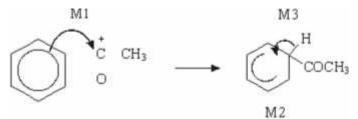
penalise wrong formula

[8]

1

1

2


1

6. (a) CH₃COCI + AICI₃ CH₃ O + AICI (1) equation (1)

penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AlCl₃ else ignore

Electrophilic substitution

NOT F/C acylation

horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure

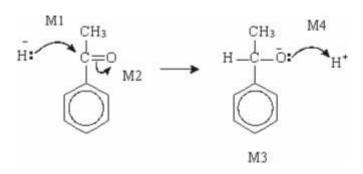
M1 arrow from within hexagon to C or to + on C

RCO

+ must be on C of

wind the sale critice.

1


4

1

1

[1]

(b) Nucleophilic addition NOT reduction

M2 not allowed independent, but can allow M1 for attack of H- on C+ formed

<u>1</u>-phenylethan(-1-)ol or (1-hydroxyethyl)benzene

(c) dehydration or elimination

(conc) H₂SO₄ or (conc) H₃PO₄

allow dilute and Al₂O₃

Do not allow iron oxides

[14]

7. B

8. D