TOPIC 16 HW MS

1. (i) molecules with same structure / structural formula (1) but with bonds (atoms or groups) arranged differently in space (3D) (1)
(ii) Plane polarised light (1)

Rotated (equally) in opposite directions (1)
2. (a) (i) Reagent: pentan-2-one (1)
or 2-pentanone
but not pent-2-one or pentyl
(ii) R eagent: Tollen's or Fehling's (1)

Observation with \mathbf{E} : no reaction (1)
Observation with \mathbf{F} : silver mirror or red ppt (1)
for \mathbf{E} and \mathbf{F}

Test	Tollens	Fehlings or Benedicts	iodoform or $\mathrm{I}_{2} / \mathrm{NaOH}$	acidified $\mathrm{K}_{2} \mathrm{CroO}_{7}$	Schiff's
observation with E	no reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F	silver or mirror or grey or ppt	red or ppt not red solution	no reasion	goes green	goes pink

(c)

must be aldehyde. Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ otherwise this is the only answer
3. (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \underline{\mathrm{CHO}}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN} \mathbf{O R}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
aldehyde must be - CHO brackets optional

2-hydroxybutanenitrile OR 2-hydroxybutanonitrile no others
(ii) nucleophilic addition

N1 includes Ip and arrow to Carbonyl C and minus charge (on either
Nor allow M 2 before M 1 , but allow M 1 to $\mathrm{C}+$ after non-scoring carbonyl
Ignore $\delta+$, δ - on carbonyl group, but if wrong way round or full +
charge on C lose M 2
M 3 for correct structure including minus sign. Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
M4 for Ip and curly arrow to H^{+}

4
(iii) (propanone) slower OR propanal faster
inductive effects of alkyl groups
OR
C of $\mathrm{C}=\mathrm{O}$ less $\delta+$ in propanone OR
alkyl groups in ketone hinder attack OR
easier to attack at end of chain
if wrong, no further marks
4. \mathbf{L}

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
Allow name propan-2-ol
Penalise contradiction of name and structure

M

Allow $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
Allow name propene
ignore -1- but penalise other numbers
Penalise contradiction of name and structure

Step $1 \mathrm{NaBH}_{4}$ or LiAlH_{4}
$\mathrm{Zn} / \mathrm{HCl}$ or $\mathrm{Sn} / \mathrm{HCl}$
or $\mathrm{H}_{2} / \mathrm{Ni}$ or $\mathrm{H}_{2} / \mathrm{Pt}$
Ignore name if formula is scorrect
ignore solvent
ignore acid (for 2 nd sep) but penalise acidified NaBH_{4} Apply list principle for extra reagents and catalysts.

M1
 (nucleophilic) addition
 Addition (not nucleophilic)
 Penalise electrophilic
 Ignore reduction

Step 2 conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or conc $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3}$
Apply list principle for extra reagents and catalysts.
M3
elimination
Independent from M3
penalise nucleophilic or electrophilic
ignore dehydration
M4
1

Step 3 HBr
Apply list principle for extra reagents and catalysts.
M5
1
electrophilic addition
Independent from M5
M6
1
5. (a) Nucleophilic addition

NOT reduction

M3

M2 not allowed independent, but can allow M1 for attack of H^{-}on $\mathrm{C}+$ formed

4
(b) dehydration or elimination
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$
allow dilute and $\mathrm{Al}_{2} \mathrm{O}_{3}$
Do not allow iron oxides

1
6. (a) (i) 2-hydroxypropanoic acid

OR
2-hydroxypropan(-1-)oic acid
Do not penalise different or missing punctuation or extra spaces.
Spelling must be exact and order of letters and numbers as here.
Can ignore - 1 - before -oic, but penalise any other numbers here.
(ii) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$

Allow $4 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

OR

$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Allow $2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(b) (i) Nucleophilic addition

M4 for lp, arrow and H_{+}

- M1 Ip and minus must becn
- M1 and M4 include lone pair and curly arrow.
- M2 not allowed indepéncient of M1, but allow following some attempt at attack on Eatrohyl C
- allow M1 for corect attack on C+
- + rather than $\delta \neq$ on $C=0$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow arrow in M4 to H of $\mathrm{H}-\mathrm{CN}$ with arrow forming cyanide ion.
(ii) Equal mixture of enantiomers / (optical) isomers
(iii) (Plane) polarized light

If missing no further mark.
(Polarised light) rotated by single enantiomer but unaffected by racemate Both needed; not allow bend, twist etc.
7. (a) Nucleophilic addition

M4 for Ip , arrow and H_{+}

M3
Allow $\mathrm{C}_{2} \mathrm{H}_{5-}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2-}$

- M1 and M4 include lone pair and curly arrow.
- Allow: CN^{-}but arrow must start at lone pair on C.
- M2 not allowed independent of M1, but allow M1 for correct attack on $\mathrm{C}+$.
- $\quad+$ rather than $\delta+$ on $C=0$ loses M2.
- Penalise incorrect partial charges.
- M3 is for correct structure including minus sign but lone pair is part of M4.
- Penalise extra curly arrows in M4.

M1
M1 for correct structure of product of part (a).
Allow $\mathrm{C}_{2} \mathrm{H}_{5-}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2-}$.
Penalise wrongly bonded, OH or CN or $\mathrm{CH}_{2} \mathrm{CH}_{3}$ once only in clip.

M2

M2 cannot be gained by simply swapping two or more groups with no attempt to show a mirror image., e.g. do not allow M2 for

because these do not show the enantiomers as mirror images.
Students must show an attempt at mirror images, eg allow

ie vertical groups same and horizontal swapped as if there was a mirror between them

No mirror need be shown
Do not penalize wedge bond when wedge comes into contact with both C \& N However these two could score M2 if placed as below as if with a "mirror" horizontally between them.

(ii) M1 (Plane) polarized light

M2 only scores following correct M1

M2 Rotated in opposite directions (equálly) (only allow if M1 correct or close)
Not just in different directions byat allow one rotates light to the left and one to the right. Not molecules rotate.
8. (a) nucleophilic addition

Attack by HCN loses M1 and M2 M2 not allowed independent of M1, but allow M1 for correct attack on C + $+C=0$ loses M2
M2 only allowed if correct carbon attacked allow minus charge on N i.e. : CN

M3 for completely correct structure not including Ip allow $\mathrm{C}_{3} \mathrm{H}_{7}$ in M3

M4 for Ip and arrow
allow without -

2-hydroxy-2-methylpentan(e)nitrile
allow 2-hydroxy-2-methylpentanonitrile
(b) Product from \mathbf{Q} is a racemic mixture/equal amounts of enantiomers
if no reference to products then no marks;
racemic mixture is inactive or inactive explained
not \mathbf{Q} is optically active or has a chiral centre etc

Product from \mathbf{R} is inactive (molecule) or has no chiral centre
9. (a) (i) Green

Ignore shades of green.
(ii) Excess acidified potassium dichromate(VI)

Reflux (for some time)

In the diagram credit should be given for

- a vertical condenser

Lose M3 and M4 for a distillation apparatus.

- an apparatus which would clearly work

Do not allow this mark for a flask drawn on its own.
Penalise diagrams where the apparatus is sealed.
(iii) Distillation

Immediately (the reagents are mixed)
(b) Keep away from naked flames

Allow heat with water-bath or heating marntle.
If a list is given ignore eye protection, otherwise lose this mark.
(c) (i) Tollens' or Fehling's reagents

Incorrect reagent(s) loses both marks.
Accept mis-spellingsifmeaning is clear.

Silver mirror / red ppt? formed
Accept 'bfue to red' but not 'red' alone.
(ii) Sodium carbonate (solution) / Group II metal

Allow indicator solutions with appropriate colours.
Accept any named carbonate or hydrogen carbonate.

Effervescence / evolves a gas
Accept 'fizzes'.
(d) Propanoic acid

If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound.
Lose M1 and M3.

Contains hydrogen bonding

Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid
10. B
11. D
12. B

