1.

MEGA LECTURE

TOPIC 15 TEST MS

(a)	Partially filled/incomplete d sub-shell/orbital/shell Ignore reference to f orbitals Do not allow d block Do not allow half-filled d orbitals	1
(b)	Has ligand(s) Allow molecules/ions with lone pairs	1
	linked by co-ordinate bonds Allow dative/donation of lone pair	1
(c)	(Blue) light is absorbed (from incident white light)	1
	Due to electrons moving to higher levels/electrons excited Allow d d transitions	1
	Red light (that) remains (is transmitted)/light that remains (transmitted light) is the colour observed Allow red light reflected	
(d)	(i) Circle round any O- List principle	1
	Circle round either N	1
	(ii) EDTA ^₄ + [Co(H ₂ O) ₆] ² + [CoEDTA] ² - + 6H ₂ O Allow missing square brackets Ignore state symbols	1
	(iii) Increase in entropy/ S positive Or increase in disorder	1
	Because 2 not (of particles/molecules/species/entities) f mol Allow 'increase in number' as stated in words or as shown by any numbers deduced correctly from an incorrect equation Do not allow increase in ions/atoms	1 orm 7
	*	1

Page 1 of 5

2.

MEGA LECTURE

(e)	(i)	Co-ordinate/dative/dative covalent bond Allow pair of electrons donated by nitrogen/ligand Do not allow pair of electrons donated from Iron/Fe			
		Covalent bond Shared electron pair	1		
	(ii)	Transport of oxygen/O ₂ Allow any statement that implies oxygen carried (around the body) Do not allow transport of carbon dioxide (CO ₂). This also contradicts the mark (list principle)	1		
	(iii)	Because it bonds to the iron/haemoglobin Allow blocks site /CO has greater affinity for haemoglobin /carboxyhaemoglobin more stable than oxyhaemoglobin	1		
		Displaces <u>oxygen</u> Or prevents transport of <u>oxygen</u> QoL	1		[16]
(a)	A lig	and is an electron pair / lone pair donor Allow uses lone / electron pair to form a co- ordinate bond		-	
	A bi meta mole	dentate ligand donates two electron pairs (to a transition al ion) from different atoms / two atoms (on the same ecule / ion) <i>QoL</i>		1	

2

3

MEGA LECTURE

	(d)	1 mol of H_2O_2 oxidises 2 mol of $Co_{2\bar{*}}$ Or $H_2O_2 + 2Co_{2^*}$ 20H + 2Co _{3*}	
		<i>M</i> [,] CoSO ₄ .7H ₂ O = 281 <i>If M</i> [,] wrong, max 3 for M1, M4, M5	1
		Moles Co ₂₊ = 9.87 / 281 = 0.03512	1
		Moles H ₂ O ₂ = 0.03512 / 2 = 0.01756 <i>M4 is method mark for (M3) / 2 (also scores</i> <i>M1)</i>	1
		Volume $H_2O_2 = (moles \times 1000) / concentration$ = 0.01756 × 1000) / 5.00 = 3.51 cm ³ / (3.51 × 10 ³ dm ³) Units essential for answer M5 is method mark for (M4) × 1000 / 5 Allow 3.4 to 3.6 cm ³ If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 & M5 Note: Answer of 7 cm ³ scores 3 for M2, M3, M5 (and any other wrong ratio max 3) Answer of 16.8 cm ³ scores 3 for M1, M4, M5 (and any other wrong M, max 3) Answer of 33.5 cm ³ scores 1 for M5 only (so wrong M, AND wrong ratio max 1)	1
•	(-)		I [16]
з.	(a) (b)	Positive ions <u>attract</u> negative ions in catalysed process Allow activation energy decreases. Allow alternative route with lower E _a Ignore references to heterogenous catalysis.	1
	(c)	S₂O₀²- + 2e- → 2SO₄²- Allow multiples including fractions. Ignore state symbols.	1
	(d)	$S_2O_{8^{2-}} + 2I \longrightarrow 2SO_{4^{2-}} + I_2$ Allow multiples including fractions. Ignore state symbols. Allow the correct equation involving I_3 - $S_2O_{8^{2-}} + 3I \longrightarrow 2SO_{4^{2-}} + I_3$ -	1 1 [4]
4.	(a)	[Fe(H ₂ O) ₆] ²⁺ + 2NH ₃ Fe(H ₂ O) ₄ (OH) ₂ + 2NH ₄ + Allow equation with OH provided equation showing formation of OH from NH ₃ given	1

4

www.youtube.com/megalecture

MEGA LECTURE

		Green precipitate –	
		$[Fe(H_2O)_6]^{2+} + CO_3^2$ FeCO ₃ + 6H ₂ O	1
		Green precipitate effervescence incorrect so loses M4	1
	(b)	 (i) Colourless / (pale) green changes to pink / purple (solution) – Do not allow pale pink to-purple 	1
		Just after the end point MnO_4 is in excess / present	1
		(ii) MnO ₄ + 8H ⁺ + 5Fe ²⁺ Mn ²⁺ + 4H ₂ O + 5Fe ³⁺	1
		Moles KMnO ₄ = 18.7 × 0.0205 / 1000 = (3.8335 × 10 ⁻⁴) <i>Process mark</i> –	I
		Moles Fe ²⁺ = 5 × 3.8335 × 10 ⁻⁴ = 1.91675 × 10 ⁻³ Mark for M2 × 5	1
		Moles Fe ²⁺ in 250 cm ³ = $10 \times 1.91675 \times 10^{-3} = 0.0191675$ moles in 50 cm ³ Process mark for moles of iron in titration (M3)	Ĩ
		$\times 10$ Original conc Fe ²⁺ = 0.0191675 × 1000 / 50 = 0.383 <u>mol</u>	1
		Answer for moles of iron (M4) × 1000 / 50 Answer must be to at least 2 sig. figs. (0.38)	
		- Meri	1 [11]
5.	С	· A·	[1]
6.	D	E Contraction of the second se	[1]
7.	В		[1]
			[1]

Page 5 of 5