TOPIC 15 TEST MS

1. (a) Partially filled/incomplete d sub-shell/orbital/shell

Ignore reference to forbitals
Do not allow d block
Do not allow half-filled d orbitals
(b) Has ligand(s)

Allow molecules/ions with lone pairs
linked by co-ordinate bonds
Allow dative/donation of lone pair
(c) (Blue) light is absorbed (from incident white light)

Due to electrons moving to higher levels/electrons excited Allow d d transitions

Red light (that) remains (is transmitted)/light that remains (transmitted light) is the colour observed

Allow red light reflected
(d) (i) Circle round any O-

List principle
Circle round either N
(ii) $\mathrm{EDTA}^{+}+\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad[\mathrm{CoEDTA}]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$

Allow missing square Drackets
Ignore state symbols,
(iii) Increase in entrono/ © positive

Or increase in disorder
Because 2mot (of particles/molecules/species/entities) form 7 mol

Allow 'increase in number' as stated in words or
Es shown by any numbers deduced correctly
from an incorrect equation
Do not allow increase in ions/atoms
(e) (i)

Co-ordinate/dative/dative covalent bond Allow pair of electrons donated by nitrogen/ligand Do not allow pair of electrons donated from Iron/Fe

Covalent bond
Shared electron pair
(ii) Transport of oxygen $/ \mathrm{O}_{2}$

Allow any statement that implies oxygen carried (around the body)
Do not allow transport of carbon dioxide $\left(\mathrm{CO}_{2}\right)$. This also contradicts the mark (list principle)
(iii) Because it bonds to the iron/haemoglobin

Allow blocks site
/CO has greater affinity for haemoglobin /carboxyhaemoglobin more stable than oxyhaemoglobin

Displaces oxygen
Or prevents transport of oxygen QoL
2. (a) A ligand is an electron pair / lone pair donor

Allow uses lone / electron pair to form a coordinate bond

A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion)

QoL
(b) $\mathrm{CoCl}_{4}{ }^{2}$ diagram

Tetrahedral shape
$109^{\circ} 28^{\prime}$

Four chlorines attached to Co with net 2 charge correct
Charge can be placed anywhere, eg on
separate formula
Penalise excess charges
Allow 109° to 109.5°
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{\mathrm{E}}\right]^{2+}$ diagram

1

1

1

1

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected
Octahedral shape
90°

Six ammonia NH_{3} molecules attached to Co with 2+ citarge correct
Allow 28 e if shown clearly on diagram
$\mathrm{CE}=$ =e)f wrong complex but mark on if only charge is incorrect
(c) In different complexes the \underline{d} orbitals / \underline{d} electrons (of the cobalt) will have pifferent energies / d orbital splitting will be different

Light Nenergy is absorbed causing an electron to be excited

1

1

1
(d) 1 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises 2 mol of $\mathrm{CO}_{2+}{ }^{-}$
$\mathrm{OrH}_{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+} 2 \mathrm{OH}+2 \mathrm{Co}^{3+}$
$\mathrm{M}_{\mathrm{r}} \mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=281$
If $M_{\text {, }}$ wrong, max 3 for M1, M4, M5
Moles $\mathrm{Co}^{2+}=9.87 / 281=0.03512$
Moles $\mathrm{H}_{2} \mathrm{O}_{2}=0.03512 / 2=0.01756$
M4 is method mark for (M3) / 2 (also scores M1)

Volume $\mathrm{H}_{2} \mathrm{O}_{2}=($ moles $\times 1000) /$ concentration $=0.01756 \times 1000) / 5.00$ $=3.51 \mathrm{~cm}^{3} /\left(3.51 \times 10^{3} \mathrm{dm}^{3}\right)$

Units essential for answer
M5 is method mark for (M4) $\times 1000 / 5$
Allow 3.4 to $3.6 \mathrm{~cm}^{3}$
If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 \& M5
Note: Answer of $7 \mathrm{~cm}^{3}$ scores 3 for M2, M3, M5 (and any other wrong ratio max 3)
Answer of $16.8 \mathrm{~cm}^{3}$ scores 3 for M1, M4, M5 (and any other wrong M_{r} max 3)
Answer of $33.5 \mathrm{~cm}^{3}$ scores 1 for M5 only (so wrong M_{r} AND wrong ratio max 1)

[16]

3. (a) Negative ions repel one another
(b) Positive ions attract negative ions in catalysed process Allow activation energy decreases.
Allow alternative route with lower E_{a}
Ignore references to heterogenous catalysis.
(c) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}$

Allow multiples including fractions.
Ignore state symbols.
(d) $\mathrm{S}_{2} \mathrm{O}_{8^{2-}}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$

Allow multiples including fractions. Ignore state symbols.
Allow the correct equation involving $\mathrm{I}_{3}-$
$\mathrm{S}_{2} \mathrm{O}_{8^{2-}}+3 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4^{2-}}+\mathrm{I}_{3}$
4. (a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \quad \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}{ }^{+}$

Allow equation with OH provided equation showing formation of OH from NH_{3} given

Green precipitate

1

1

1
(b) (i) Colourless / (pale) green changes to pink / purple (solution)

Do not allow pale pink to-purple
Just after the end point MnO_{4} is in excess / present
(ii) $\mathrm{MnO}_{4}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \quad \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$

Moles $\mathrm{KMnO}_{4}=18.7 \times 0.0205 / 1000=\left(3.8335 \times 10^{4}\right)$ Process mark

Moles $\mathrm{Fe}^{2+}=5 \times 3.8335 \times 10^{4}=1.91675 \times 10^{3}$ Mark for M2 $\times 5$

Moles Fe^{2+} in $250 \mathrm{~cm}^{3}=10 \times 1.91675 \times 10^{3}=0.0191675$ moles in $50 \mathrm{~cm}^{3}$

Process mark for moles of insh in titration (M3) $\times 10$

Original conc $\mathrm{Fe}^{2+}=0.0191675 \times 1000 / 50=0.383 \underline{\mathrm{~mol}}$ dm^{3}

Answer for moles of iron (M4) $\times 1000 / 50$
Answer musto to at least 2 sig. figs. (0.38)
5. C
6. D
7. B

1

1

1

1

1

1

